找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: LATIN 2024: Theoretical Informatics; 16th Latin American José A. Soto,Andreas Wiese Conference proceedings 2024 The Editor(s) (if applicab

[復(fù)制鏈接]
樓主: 相似
31#
發(fā)表于 2025-3-26 21:16:24 | 只看該作者
32#
發(fā)表于 2025-3-27 04:28:16 | 只看該作者
Cristina G. Fernandes,Guilherme Oliveira Mota,Nicolás Sanhueza-Matamalae will first evaluate existing treatment programs against their adequacy in addressing the disturbances that may cause or maintain a depressive disorder during childhood and then describe a comprehensive intervention program for depressed youths..Reflected throughout this chapter is our belief that
33#
發(fā)表于 2025-3-27 05:48:41 | 只看該作者
34#
發(fā)表于 2025-3-27 13:04:09 | 只看該作者
35#
發(fā)表于 2025-3-27 14:01:59 | 只看該作者
Induced Tree Covering and?the?Generalized Yutsis Propertycal representation of general recoupling coefficients, and the studies on the tree cover number are motivated by its equality with the maximum positive semidefinite nullity on multigraphs with treewidth at most two..Given the interest in the tree cover number on graphs with bounded treewidth, we inv
36#
發(fā)表于 2025-3-27 19:49:48 | 只看該作者
37#
發(fā)表于 2025-3-28 01:49:12 | 只看該作者
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/l/image/580050.jpg
38#
發(fā)表于 2025-3-28 02:16:36 | 只看該作者
39#
發(fā)表于 2025-3-28 06:16:07 | 只看該作者
40#
發(fā)表于 2025-3-28 11:41:02 | 只看該作者
Self-complementary (Pseudo-)Split Graphsally the core of self-complementary graphs. Indeed, we show that all realizations of forcibly self-complementary degree sequences are pseudo-split graphs. We also give formulas to calculate the number of self-complementary (pseudo-)split graphs of a given order, and show that Trotignon’s conjecture holds for all self-complementary split graphs.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 11:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
四川省| 兴城市| 来宾市| 临桂县| 金溪县| 彰化市| 伊川县| 莱州市| 镇雄县| 蒙山县| 杨浦区| 青龙| 忻城县| 磐石市| 东光县| 车致| 遂宁市| 平顶山市| 新平| 洪湖市| 武胜县| 集贤县| 攀枝花市| 武义县| 南华县| 西和县| 阿鲁科尔沁旗| 保靖县| 房山区| 林口县| 岑溪市| 青州市| 济南市| 辽阳县| 瓦房店市| 疏附县| 西和县| 乐山市| 遂昌县| 乌苏市| 新化县|