找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: LATIN 2014: Theoretical Informatics; 11th Latin American Alberto Pardo,Alfredo Viola Conference proceedings 2014 Springer-Verlag Berlin He

[復(fù)制鏈接]
樓主: Encomium
51#
發(fā)表于 2025-3-30 11:49:42 | 只看該作者
52#
發(fā)表于 2025-3-30 13:27:29 | 只看該作者
A Randomized Incremental Approach for the Hausdorff Voronoi Diagram of Non-crossing Clustersime and expected .(.) space, which considerably improves previous results. Our technique efficiently handles non-standard characteristics of generalized Voronoi diagrams, such as sites of non-constant complexity, sites that are not enclosed in their Voronoi regions, and empty Voronoi regions.
53#
發(fā)表于 2025-3-30 17:33:46 | 只看該作者
Smooth Orthogonal Drawings of Planar Graphsraph has an SC.-layout. On the negative side, we demonstrate an infinite family of biconnected 4-planar graphs that require exponential area for an SC.-layout. Finally, we present an infinite family of biconnected 4-planar graphs that do not admit an SC.-layout.
54#
發(fā)表于 2025-3-30 23:21:42 | 只看該作者
55#
發(fā)表于 2025-3-31 03:31:16 | 只看該作者
56#
發(fā)表于 2025-3-31 06:29:55 | 只看該作者
Hierarchical Complexity of 2-Clique-Colouring Weakly Chordal Graphs and Perfect Graphs Having Clique having size at least 3?[J. Algorithms 45 (2002), 40–54], proving that it is a .-complete problem. We then determine a hierarchy of nested subclasses of perfect graphs with all cliques having size at least 3 whereby each graph class is in a distinct complexity class, namely .-complete, .-complete, and ..
57#
發(fā)表于 2025-3-31 10:21:25 | 只看該作者
58#
發(fā)表于 2025-3-31 15:53:22 | 只看該作者
59#
發(fā)表于 2025-3-31 17:36:24 | 只看該作者
Conference proceedings 2014y, in March/April 2014. The 65 papers presented together with 5 abstracts were carefully reviewed and selected from 192 submissions. The papers address a variety of topics in theoretical computer science with a certain focus on complexity, computational geometry, graph drawing, automata, computabili
60#
發(fā)表于 2025-4-1 00:01:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 22:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安顺市| 汉川市| 卢湾区| 双城市| 饶阳县| 张家川| 香港| 额济纳旗| 金湖县| 芒康县| 南雄市| 余江县| 闻喜县| 新化县| 河北省| 齐齐哈尔市| 海南省| 原平市| 宣汉县| 襄垣县| 县级市| 忻州市| 吉安市| 扬中市| 荥经县| 沿河| 江都市| 锡林浩特市| 福建省| 丰宁| 松桃| 乐业县| 米脂县| 肃南| 南康市| 成安县| 河北区| 克山县| 安新县| 鄂托克旗| 桂东县|