找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: LATIN 2014: Theoretical Informatics; 11th Latin American Alberto Pardo,Alfredo Viola Conference proceedings 2014 Springer-Verlag Berlin He

[復制鏈接]
樓主: Encomium
51#
發(fā)表于 2025-3-30 11:49:42 | 只看該作者
52#
發(fā)表于 2025-3-30 13:27:29 | 只看該作者
A Randomized Incremental Approach for the Hausdorff Voronoi Diagram of Non-crossing Clustersime and expected .(.) space, which considerably improves previous results. Our technique efficiently handles non-standard characteristics of generalized Voronoi diagrams, such as sites of non-constant complexity, sites that are not enclosed in their Voronoi regions, and empty Voronoi regions.
53#
發(fā)表于 2025-3-30 17:33:46 | 只看該作者
Smooth Orthogonal Drawings of Planar Graphsraph has an SC.-layout. On the negative side, we demonstrate an infinite family of biconnected 4-planar graphs that require exponential area for an SC.-layout. Finally, we present an infinite family of biconnected 4-planar graphs that do not admit an SC.-layout.
54#
發(fā)表于 2025-3-30 23:21:42 | 只看該作者
55#
發(fā)表于 2025-3-31 03:31:16 | 只看該作者
56#
發(fā)表于 2025-3-31 06:29:55 | 只看該作者
Hierarchical Complexity of 2-Clique-Colouring Weakly Chordal Graphs and Perfect Graphs Having Clique having size at least 3?[J. Algorithms 45 (2002), 40–54], proving that it is a .-complete problem. We then determine a hierarchy of nested subclasses of perfect graphs with all cliques having size at least 3 whereby each graph class is in a distinct complexity class, namely .-complete, .-complete, and ..
57#
發(fā)表于 2025-3-31 10:21:25 | 只看該作者
58#
發(fā)表于 2025-3-31 15:53:22 | 只看該作者
59#
發(fā)表于 2025-3-31 17:36:24 | 只看該作者
Conference proceedings 2014y, in March/April 2014. The 65 papers presented together with 5 abstracts were carefully reviewed and selected from 192 submissions. The papers address a variety of topics in theoretical computer science with a certain focus on complexity, computational geometry, graph drawing, automata, computabili
60#
發(fā)表于 2025-4-1 00:01:05 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-13 02:48
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
彭阳县| 闽侯县| 乌审旗| 垫江县| 桃江县| 班戈县| 酉阳| 靖宇县| 景谷| 黄龙县| 教育| 新源县| 仁布县| 新巴尔虎右旗| 海门市| 扎兰屯市| 广灵县| 临武县| 尼玛县| 蒙自县| 遂昌县| 凭祥市| 安陆市| 北碚区| 和田市| 界首市| 黎平县| 乡城县| 信阳市| 左贡县| 桂平市| 郑州市| 浦县| 昭平县| 江永县| 沭阳县| 土默特左旗| 上栗县| 方正县| 开原市| 南汇区|