找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: LATIN 2002: Theoretical Informatics; 5th Latin American S Sergio Rajsbaum Conference proceedings 2002 Springer-Verlag Berlin Heidelberg 200

[復(fù)制鏈接]
樓主: lumbar-puncture
41#
發(fā)表于 2025-3-28 17:07:28 | 只看該作者
42#
發(fā)表于 2025-3-28 21:01:53 | 只看該作者
43#
發(fā)表于 2025-3-29 00:42:32 | 只看該作者
Beta-Expansions for Cubic Pisot Numbers? a < β ., called the beta-shift. This dynamical system is characterized by the beta-expansion of 1; in particular, it is of finite type if and only if ..(1) is finite; β is then called a simple beta-number..We first compute the beta-expansion of 1 for any cubic Pisot number. Next we show that cubic simple beta-numbers are Pisot numbers.
44#
發(fā)表于 2025-3-29 05:51:16 | 只看該作者
A Deterministic Polynomial Time Algorithm for Heilbronn’s Problem in Dimension Threethe unit square [0, 1]. where all triangles have area at least ω(log ./..). Here we will consider a 3-dimensional analogue of this problem and we will give a deterministic polynomial time algorithm which finds . points in the unit cube [0, 1]. such that the volume of every tetrahedron among these . points is at least ω(log ./..).
45#
發(fā)表于 2025-3-29 08:39:30 | 只看該作者
46#
發(fā)表于 2025-3-29 14:26:08 | 只看該作者
Testing and Checking of Finite State Systemsite state achines. Conformance testing of deter inistic achines has been investigated for a long time; we will discuss various efficient ethods. Testing of nondeter inistic and probabilistic achines is related to games with incomplete infor ation and to partially observable Markov decisions processes.
47#
發(fā)表于 2025-3-29 17:29:02 | 只看該作者
48#
發(fā)表于 2025-3-29 21:19:27 | 只看該作者
49#
發(fā)表于 2025-3-30 00:18:53 | 只看該作者
50#
發(fā)表于 2025-3-30 04:46:47 | 只看該作者
Algorithms for Local Alignment with Length Constraints*ger Δ. The algorithm runs in time . (.Δ) using . (.Δ) space. We also introduce the . problem and show how our idea can be applied to this case as well. This is a dual approach to the well-known cyclic edit distance problem.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 14:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青浦区| 江阴市| 本溪市| 桐城市| 新乡市| 溧阳市| 杂多县| 冷水江市| 红桥区| 团风县| 大渡口区| 通许县| 玉门市| 神池县| 望奎县| 麻城市| 克山县| 沈阳市| 全椒县| 镇坪县| 虎林市| 安宁市| 鄄城县| 县级市| 黔东| 临江市| 望江县| 灵寿县| 岚皋县| 绩溪县| 曲周县| 昌都县| 师宗县| 沂源县| 阳城县| 潜江市| 广河县| 定安县| 扶余县| 成武县| 商南县|