找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Kompaktkurs Finite Elemente für Einsteiger; Theorie und Beispiel Manfred Hahn,Michael Reck Textbook 20181st edition Springer Fachmedien Wie

[復(fù)制鏈接]
樓主: ALLY
21#
發(fā)表于 2025-3-25 04:53:38 | 只看該作者
22#
發(fā)表于 2025-3-25 08:35:35 | 只看該作者
http://image.papertrans.cn/k/image/544782.jpg
23#
發(fā)表于 2025-3-25 15:09:03 | 只看該作者
Numerische Integration,Für die computergestützte FE-Berechnung werden die Integralterme der schwachen Form nach Einsetzen der Ansatzfunktionen nicht analytisch, sondern numerisch Integriert. Die hierbei verwendete Gauss-Integration wird im vorliegenden Kapitel erl?utert, und die Anwendung auf ein- und mehrdimensionale Gebiete vorgestellt.
24#
發(fā)表于 2025-3-25 16:25:44 | 只看該作者
25#
發(fā)表于 2025-3-25 23:00:08 | 只看該作者
26#
發(fā)表于 2025-3-26 01:01:15 | 只看該作者
Mathematische Grundlagen der FEM,dprobleme über ein Potential beschrieben werden k?nnen, und zweitens, dass die Minimierung dieses Potentials gerade die L?sung des Feldproblems liefert. Das Ziel dieses Kapitels ist es, zum einen die L?sung dieser Minimierungsaufgabe herzuleiten und zum anderen, diese anschlie?end auf Probleme zu er
27#
發(fā)表于 2025-3-26 05:06:05 | 只看該作者
28#
發(fā)表于 2025-3-26 08:53:37 | 只看該作者
Finite-Elemente-Formulierung,onnen wird. Diese Form hat den Vorteil, dass sie nach der Auswertung der Integrale in der schwachen Form auf eine Vektor-Matrix-Formulierung führt, die mithilfe von Computern effizient gel?st werden kann. Das Vorgehen für das Einsetzen der Ansatzfunktionen in die schwache Form wird in diesem Kapitel
29#
發(fā)表于 2025-3-26 13:08:04 | 只看該作者
30#
發(fā)表于 2025-3-26 19:21:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 09:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
富川| 绥宁县| 马关县| 威宁| 香格里拉县| 靖边县| 兖州市| 长丰县| 准格尔旗| 芒康县| 衡山县| 赤水市| 辰溪县| 山东省| 禹城市| 当涂县| 突泉县| 博野县| 保亭| 岑溪市| 滨海县| 鹿泉市| 东方市| 武川县| 通海县| 莱西市| 广东省| 同仁县| 涟水县| 会同县| 江门市| 陇川县| 佛学| 池州市| 鸡东县| 沂源县| 温州市| 中西区| 万荣县| 调兵山市| 南昌县|