找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Kolmogorov Operators and Their Applications; Stéphane Menozzi,Andrea Pascucci,Sergio Polidoro Conference proceedings 2024 The Editor(s) (i

[復制鏈接]
樓主: 決絕
21#
發(fā)表于 2025-3-25 04:44:12 | 只看該作者
22#
發(fā)表于 2025-3-25 10:33:07 | 只看該作者
Hypocoercivity Methods for Kinetic Fokker-Planck Equations with Factorised Gibbs States,es the Fokker-Planck and the transport operators. Rates of convergence in presence of a global equilibrium, or decay rates otherwise, are estimated either by the corresponding rates in the diffusion limit, or by the rates of convergence to local equilibria, under moment conditions. On the basis of t
23#
發(fā)表于 2025-3-25 13:36:49 | 只看該作者
24#
發(fā)表于 2025-3-25 16:33:49 | 只看該作者
25#
發(fā)表于 2025-3-25 21:28:16 | 只看該作者
26#
發(fā)表于 2025-3-26 01:26:00 | 只看該作者
About the Regularity of Degenerate Non-local Kolmogorov Operators Under Diffusive Perturbations,ither local or non-local. More precisely, we establish that some estimates, such as the Schauder and Sobolev ones, already known for the non-perturbed operator still hold, and with the same constants, when we perturb the Ornstein-Uhlenbeck operator with second order diffusions with coefficients only
27#
發(fā)表于 2025-3-26 07:05:13 | 只看該作者
28#
發(fā)表于 2025-3-26 08:52:42 | 只看該作者
On Averaged Control and Iteration Improvement for a Class of Multidimensional Ergodic Diffusions,ith variable diffusion and drift coefficients both depending on control; the diffusion coefficient must be a scalar function. The convergence of Howard’s iterative reward improvement algorithm to the unique solution of Bellman’s equation is also established.
29#
發(fā)表于 2025-3-26 13:41:41 | 只看該作者
Conference proceedings 2024 arise in several research fields...This volume collects a selection of the talks given at the Cortona meeting by experts in both fields, who presented the most recent developments of the theory. Particular emphasis has been given to degenerate partial differential equations, It? processes, applicat
30#
發(fā)表于 2025-3-26 18:31:59 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 11:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
卢龙县| 秀山| 西昌市| 延长县| 电白县| 顺义区| 左贡县| 历史| 苍梧县| 土默特左旗| 乳山市| 磴口县| 榆林市| 肥西县| 和平县| 海淀区| 南充市| 迁西县| 勐海县| 盘山县| 曲靖市| 西乌珠穆沁旗| 黄浦区| 揭西县| 新宾| 南汇区| 彭山县| 湟中县| 齐齐哈尔市| 当雄县| 五台县| 汨罗市| 左贡县| 宣威市| 年辖:市辖区| 合阳县| 望都县| 虎林市| 白水县| 玉田县| 内乡县|