找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge-Driven Board-Level Functional Fault Diagnosis; Fangming Ye,Zhaobo Zhang,Xinli Gu Book 2017 The Editor(s) (if applicable) and The

[復(fù)制鏈接]
查看: 31591|回復(fù): 41
樓主
發(fā)表于 2025-3-21 19:01:21 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Knowledge-Driven Board-Level Functional Fault Diagnosis
編輯Fangming Ye,Zhaobo Zhang,Xinli Gu
視頻videohttp://file.papertrans.cn/545/544240/544240.mp4
概述Explains and applies optimized techniques from the machine-learning domain to solve the fault diagnosis problem in the realm of electronic system design and manufacturing.Demonstrates techniques based
圖書(shū)封面Titlebook: Knowledge-Driven Board-Level Functional Fault Diagnosis;  Fangming Ye,Zhaobo Zhang,Xinli Gu Book 2017 The Editor(s) (if applicable) and The
描述This book provides a comprehensive set of characterization, prediction, optimization, evaluation, and evolution techniques for a diagnosis system for fault isolation in large electronic systems. Readers with a background in electronics design or system engineering can use this book as a reference to derive insightful knowledge from data analysis and use this knowledge as guidance for designing reasoning-based diagnosis systems. Moreover, readers with a background in statistics or data analytics can use this book as a practical case study for adapting data mining and machine learning techniques to electronic system design and diagnosis. This book identifies the key challenges in reasoning-based, board-level diagnosis system design and presents the solutions and corresponding results that have emerged from leading-edge research in this domain. It covers topics ranging from highly accurate fault isolation, adaptive fault isolation, diagnosis-system robustness assessment, to system performance analysis and evaluation, knowledge discovery and knowledge transfer. With its emphasis on the above topics, the book provides an in-depth and broad view of reasoning-based fault diagnosis system
出版日期Book 2017
關(guān)鍵詞Functional Fault Diagnosis; Intelligent Fault Diagnosis; Data-Driven Design of Fault Diagnosis; Resilie
版次1
doihttps://doi.org/10.1007/978-3-319-40210-9
isbn_softcover978-3-319-82054-5
isbn_ebook978-3-319-40210-9
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Knowledge-Driven Board-Level Functional Fault Diagnosis影響因子(影響力)




書(shū)目名稱Knowledge-Driven Board-Level Functional Fault Diagnosis影響因子(影響力)學(xué)科排名




書(shū)目名稱Knowledge-Driven Board-Level Functional Fault Diagnosis網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Knowledge-Driven Board-Level Functional Fault Diagnosis網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Knowledge-Driven Board-Level Functional Fault Diagnosis被引頻次




書(shū)目名稱Knowledge-Driven Board-Level Functional Fault Diagnosis被引頻次學(xué)科排名




書(shū)目名稱Knowledge-Driven Board-Level Functional Fault Diagnosis年度引用




書(shū)目名稱Knowledge-Driven Board-Level Functional Fault Diagnosis年度引用學(xué)科排名




書(shū)目名稱Knowledge-Driven Board-Level Functional Fault Diagnosis讀者反饋




書(shū)目名稱Knowledge-Driven Board-Level Functional Fault Diagnosis讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:26:40 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:12:12 | 只看該作者
地板
發(fā)表于 2025-3-22 07:22:15 | 只看該作者
Adaptive Diagnosis Using Decision Trees (DT),cy and effective board repair, a large number of syndromes must be used. Therefore, the diagnosis cost can be prohibitively high due to the increase in diagnosis time and the complexity of syndrome collection/analysis. In this chapter, we apply decision trees to the problem of adaptive board-level f
5#
發(fā)表于 2025-3-22 09:59:21 | 只看該作者
6#
發(fā)表于 2025-3-22 15:07:29 | 只看該作者
Handling Missing Syndromes,mes, are not available during diagnosis. Since root-cause isolation for a failing board relies on reasoning based on syndromes, any information loss (e.g., missing syndromes) during the extraction of a diagnosis log may lead to ambiguous repair suggestions. In this chapter, we propose a board-level
7#
發(fā)表于 2025-3-22 20:49:13 | 只看該作者
Knowledge Discovery and Knowledge Transfer,tomatically generate an intelligent diagnostic system from existing resources [., .]. However, knowledge acquisition is a major problem for a reasoning-based method at the initial product ramp-up stage. Machine learning-based reasoning requires an adequate database for training the reasoning engine,
8#
發(fā)表于 2025-3-22 23:05:55 | 只看該作者
9#
發(fā)表于 2025-3-23 04:43:24 | 只看該作者
s what elements are needed for the initial implementation of a fundamental Enterprise Architecture...The book‘s pragmatic approach keeps existing architecture frameworks and methodologies in mind while providing instructions that are readable and applicable to all. The Enterprise Architecture Implem
10#
發(fā)表于 2025-3-23 07:55:12 | 只看該作者
Fangming Ye,Zhaobo Zhang,Krishnendu Chakrabarty,Xinli Gud real-world examples.The book also examines the origins of .Implement a basic Enterprise Architecture from start to finish using a four-stage, wheel-based approach. Aided by real-world examples, this book shows what elements are needed for the initial implementation of a fundamental Enterprise Arch
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 00:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
毕节市| 宜君县| 璧山县| 昔阳县| 自治县| 芜湖市| 林周县| 临邑县| 嵊州市| 镇原县| 边坝县| 西乌珠穆沁旗| 公安县| 厦门市| 湾仔区| 成武县| 北辰区| 获嘉县| 蓝田县| 喀什市| 克东县| 曲阜市| 镇安县| 西和县| 巴彦淖尔市| 洛阳市| 卢湾区| 綦江县| 湘潭市| 阜新市| 无为县| 镇赉县| 佳木斯市| 宁津县| 宁武县| 裕民县| 巴南区| 平定县| 峨眉山市| 兴安县| 汉阴县|