找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge, Data and Computer-Assisted Decisions; Martin Schader,Wolfgang Gaul Conference proceedings 1990 Springer-Verlag Berlin Heidelber

[復(fù)制鏈接]
樓主: irritants
21#
發(fā)表于 2025-3-25 04:02:00 | 只看該作者
Pyramidal Representation of Symbolic Objectsevelop methods that yield easily interpretable results. In this paper we show how we may enlarge the domain of the data at the input and obtain an “explained” output of a clustering method by adopting notions of Symbolic Data Analysis. We start by recalling the definitions and properties of symbolic
22#
發(fā)表于 2025-3-25 09:28:16 | 只看該作者
Knowledge Representation and Symbolic Data Analysisadapted to represent knowledge which “unifies” instead of observations which characterize “individual things”: for instance, “the customers of my shop” instead of “a customer of my shop”, a “a kind of mushroom” instead of “the mushroom, that I have in my hand”. In Diday (1987) we have introduced sev
23#
發(fā)表于 2025-3-25 14:01:38 | 只看該作者
Automated Acquisition of Production Rules by Empirical Supervised Learning Methods combines a data analysis technique for linearly classifying with a conceptual method for generating disjunctive cover for each class, taking advantage of the peculiarities of both the approaches. Initial empirical results are encouraging.
24#
發(fā)表于 2025-3-25 16:56:48 | 只看該作者
Cluster and Classify: A Conceptual Approachfeasibility of establishing conceptual clustering schemes within the structure of an Object Oriented Programming System, namely KEE (Knowledge Engineering Environment). It is shown that both adequate data description and representation are crucial in order to successfully develop the method. The con
25#
發(fā)表于 2025-3-26 00:03:55 | 只看該作者
Incremental Learning From Symbolic Objectsoisy and insufficiently representative, our approach is oriented towards successive approximations of a discriminant rule base; the aim is to predict conclusions according to further examples..A 2-step iterative process is presented:.First results on a. well-studied learning base are detailed.
26#
發(fā)表于 2025-3-26 01:02:43 | 只看該作者
27#
發(fā)表于 2025-3-26 06:54:31 | 只看該作者
28#
發(fā)表于 2025-3-26 12:32:12 | 只看該作者
29#
發(fā)表于 2025-3-26 13:51:43 | 只看該作者
Some Algorithms for “Bond Energy” Data Analysis, Including Simulated Annealinggorithm” originally proposed by McCormick et al. (1972) for permuting rows and columns of data matrices into visually interpretable forms. To evaluate the performance of three variations of SA, they were compared to two deterministic, heuristic methods known to perform well for the particular type o
30#
發(fā)表于 2025-3-26 16:52:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 07:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
老河口市| 潢川县| 涿鹿县| 双柏县| 贵德县| 福鼎市| 若羌县| 乌审旗| 青川县| 镇安县| 政和县| 长寿区| 准格尔旗| 辉县市| 台南市| 建德市| 大新县| 商南县| 宾川县| 灵台县| 军事| 克什克腾旗| 色达县| 旅游| 琼海市| 砀山县| 华安县| 亳州市| 阿拉善盟| 岗巴县| 德保县| 龙游县| 平乡县| 松桃| 嘉峪关市| 惠州市| 汨罗市| 河曲县| 祁东县| 沙湾县| 海城市|