找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Science, Engineering and Management; 14th International C Han Qiu,Cheng Zhang,Sun-Yuan Kung Conference proceedings 2021 Springer

[復(fù)制鏈接]
樓主: miserly
21#
發(fā)表于 2025-3-25 08:51:20 | 只看該作者
Knowledge-Based Diverse Feature Transformation for Few-Shot Relation Classificationelation features with information deficit caused by the scarcity of samples and lacking of significant distinguishing features. Existing methods ignore the latter problem. What’s worse, while there is a big difference between the source domain and the target domain, the generalization performance of
22#
發(fā)表于 2025-3-25 14:28:05 | 只看該作者
23#
發(fā)表于 2025-3-25 19:29:58 | 只看該作者
24#
發(fā)表于 2025-3-25 22:50:32 | 只看該作者
25#
發(fā)表于 2025-3-26 02:11:07 | 只看該作者
26#
發(fā)表于 2025-3-26 04:58:53 | 只看該作者
27#
發(fā)表于 2025-3-26 11:45:17 | 只看該作者
A Semi-supervised Multi-objective Evolutionary Algorithm for Multi-layer Network Community Detectionl role in multi-relationship complex system analysis, thus gradually gaining popularity especially in the optimization algorithms. The multi-objective optimization (MOOP) methods attract attention owing to the flexibility in solving community detection problems. Nevertheless, most of the MOOP method
28#
發(fā)表于 2025-3-26 15:24:16 | 只看該作者
Named Entity Recognition Based on Reinforcement Learning and Adversarial Trainingon for named entity recognition. Our model can not only reduce the influence of noise in generated data, but also find more informative instances for training. In the pre-training stage of the model, in order to make full use of the data generated by distant supervision, we use reinforcement learnin
29#
發(fā)表于 2025-3-26 19:18:29 | 只看該作者
Improved Partitioning Graph Embedding Framework for Small Clusterded parameters in large graphs, a single machine cannot load the entire graph into GPUs at once, so a partitioning strategy is required. However, there are some problems with partitioning strategies. Firstly, partitioning introduces data I/O and processing overhead, which increases training time, es
30#
發(fā)表于 2025-3-26 23:50:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
苏尼特右旗| 和政县| 丹东市| 阿巴嘎旗| 静海县| 鄂州市| 金堂县| 滁州市| 易门县| 巴马| 乌海市| 镇赉县| 宁晋县| 浦县| 乐昌市| 布拖县| 榆林市| 五峰| 民勤县| 万年县| 佛教| 都兰县| 东至县| 琼结县| 姜堰市| 崇信县| 灵丘县| 盐亭县| 达日县| 大兴区| 延吉市| 鹤庆县| 巨鹿县| 孝昌县| 吉木萨尔县| 余江县| 徐闻县| 临清市| 绵竹市| 茂名市| 日照市|