找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Science, Engineering and Management; 14th International C Han Qiu,Cheng Zhang,Sun-Yuan Kung Conference proceedings 2021 Springer

[復(fù)制鏈接]
樓主: miserly
21#
發(fā)表于 2025-3-25 08:51:20 | 只看該作者
Knowledge-Based Diverse Feature Transformation for Few-Shot Relation Classificationelation features with information deficit caused by the scarcity of samples and lacking of significant distinguishing features. Existing methods ignore the latter problem. What’s worse, while there is a big difference between the source domain and the target domain, the generalization performance of
22#
發(fā)表于 2025-3-25 14:28:05 | 只看該作者
23#
發(fā)表于 2025-3-25 19:29:58 | 只看該作者
24#
發(fā)表于 2025-3-25 22:50:32 | 只看該作者
25#
發(fā)表于 2025-3-26 02:11:07 | 只看該作者
26#
發(fā)表于 2025-3-26 04:58:53 | 只看該作者
27#
發(fā)表于 2025-3-26 11:45:17 | 只看該作者
A Semi-supervised Multi-objective Evolutionary Algorithm for Multi-layer Network Community Detectionl role in multi-relationship complex system analysis, thus gradually gaining popularity especially in the optimization algorithms. The multi-objective optimization (MOOP) methods attract attention owing to the flexibility in solving community detection problems. Nevertheless, most of the MOOP method
28#
發(fā)表于 2025-3-26 15:24:16 | 只看該作者
Named Entity Recognition Based on Reinforcement Learning and Adversarial Trainingon for named entity recognition. Our model can not only reduce the influence of noise in generated data, but also find more informative instances for training. In the pre-training stage of the model, in order to make full use of the data generated by distant supervision, we use reinforcement learnin
29#
發(fā)表于 2025-3-26 19:18:29 | 只看該作者
Improved Partitioning Graph Embedding Framework for Small Clusterded parameters in large graphs, a single machine cannot load the entire graph into GPUs at once, so a partitioning strategy is required. However, there are some problems with partitioning strategies. Firstly, partitioning introduces data I/O and processing overhead, which increases training time, es
30#
發(fā)表于 2025-3-26 23:50:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 12:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
如东县| 新野县| 淄博市| 昭苏县| 黎川县| 廉江市| 余江县| 水富县| 平顶山市| 上思县| 西吉县| 平远县| 通榆县| 镇原县| 洛扎县| 邹城市| 抚顺县| 塘沽区| 井研县| 新邵县| 黄龙县| 夏邑县| 治县。| 中宁县| 贵德县| 南开区| 加查县| 桑日县| 新田县| 高台县| 酉阳| 文水县| 西乌珠穆沁旗| 屏边| 安新县| 金坛市| 二连浩特市| 广东省| 辽阳市| 临沂市| 云阳县|