找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Science, Engineering and Management; 14th International C Han Qiu,Cheng Zhang,Sun-Yuan Kung Conference proceedings 2021 Springer

[復(fù)制鏈接]
樓主: miserly
21#
發(fā)表于 2025-3-25 08:51:20 | 只看該作者
Knowledge-Based Diverse Feature Transformation for Few-Shot Relation Classificationelation features with information deficit caused by the scarcity of samples and lacking of significant distinguishing features. Existing methods ignore the latter problem. What’s worse, while there is a big difference between the source domain and the target domain, the generalization performance of
22#
發(fā)表于 2025-3-25 14:28:05 | 只看該作者
23#
發(fā)表于 2025-3-25 19:29:58 | 只看該作者
24#
發(fā)表于 2025-3-25 22:50:32 | 只看該作者
25#
發(fā)表于 2025-3-26 02:11:07 | 只看該作者
26#
發(fā)表于 2025-3-26 04:58:53 | 只看該作者
27#
發(fā)表于 2025-3-26 11:45:17 | 只看該作者
A Semi-supervised Multi-objective Evolutionary Algorithm for Multi-layer Network Community Detectionl role in multi-relationship complex system analysis, thus gradually gaining popularity especially in the optimization algorithms. The multi-objective optimization (MOOP) methods attract attention owing to the flexibility in solving community detection problems. Nevertheless, most of the MOOP method
28#
發(fā)表于 2025-3-26 15:24:16 | 只看該作者
Named Entity Recognition Based on Reinforcement Learning and Adversarial Trainingon for named entity recognition. Our model can not only reduce the influence of noise in generated data, but also find more informative instances for training. In the pre-training stage of the model, in order to make full use of the data generated by distant supervision, we use reinforcement learnin
29#
發(fā)表于 2025-3-26 19:18:29 | 只看該作者
Improved Partitioning Graph Embedding Framework for Small Clusterded parameters in large graphs, a single machine cannot load the entire graph into GPUs at once, so a partitioning strategy is required. However, there are some problems with partitioning strategies. Firstly, partitioning introduces data I/O and processing overhead, which increases training time, es
30#
發(fā)表于 2025-3-26 23:50:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 12:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
崇礼县| 长武县| 电白县| 深泽县| 四川省| 惠安县| 安龙县| 德令哈市| 新化县| 沙雅县| 台湾省| 瑞丽市| 日土县| 福贡县| 保康县| 漯河市| 黄山市| 兴隆县| 东安县| 九龙坡区| 加查县| 万州区| 临西县| 曲麻莱县| 平和县| 开阳县| 福清市| 拜城县| 全南县| 清远市| 开鲁县| 南漳县| 涟源市| 洛浦县| 昌图县| 惠州市| 清新县| 南乐县| 梓潼县| 丰原市| 南投市|