找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Science, Engineering and Management; 15th International C Gerard Memmi,Baijian Yang,Meikang Qiu Conference proceedings 2022 The E

[復(fù)制鏈接]
樓主: deflate
11#
發(fā)表于 2025-3-23 10:13:40 | 只看該作者
DISEL: A Language for?Specifying DIS-Based Ontologiesranslation of its ontologies to other ontology languages. We also introduce . tool, which has several capabilities such as editing and visualising ontologies. It can guide the specifier in providing the essential elements of the ontology, then it automatically produces the full . ontology specification.
12#
發(fā)表于 2025-3-23 14:58:51 | 只看該作者
13#
發(fā)表于 2025-3-23 19:06:40 | 只看該作者
14#
發(fā)表于 2025-3-24 02:08:31 | 只看該作者
A Multi-level Attention-Based LSTM Network for?Ultra-short-term Solar Power Forecast Using Meteoroloin knowledge (e.g., clearness index, numerical weather prediction, and short-wave radiation) is integrated into the decoder for forecasting solar PV power. A case study is conducted using the dataset collected from real-world PV plants in different weather conditions. The experiment results demonstr
15#
發(fā)表于 2025-3-24 04:49:28 | 只看該作者
Unsupervised Person Re-ID via?Loose-Tight Alternate Clustering Loose and Tight Bounds to alleviate two kinds of clustering errors. Based on these bounds, a novel Loose-Tight alternate clustering strategy is adopted to optimize the visual model iteratively. Furthermore, a quality measurement based learning method is proposed to mitigate the side-effects of the
16#
發(fā)表于 2025-3-24 10:10:35 | 只看該作者
17#
發(fā)表于 2025-3-24 10:59:59 | 只看該作者
Deep User Multi-interest Network for?Click-Through Rate Predictionation for each user who interacted with the candidate item. Then, attention mechanism is introduced to adaptively aggregate these interest representations to obtain user-user interest, which reflects the collaborative filtering information among users. Extensive experimental results on public real-w
18#
發(fā)表于 2025-3-24 16:47:19 | 只看該作者
Deep-to-Bottom Weights Decay: A Systemic Knowledge Review Learning Technique for?Transformer Layers RT into a 6-layer model and evaluate it on the GLUE dataset. Experimental results show that our review approach is not only able to outperform other existing techniques, but also outperform the original model on partial datasets.
19#
發(fā)表于 2025-3-24 20:17:48 | 只看該作者
Topic and?Reference Guided Keyphrase Generation from?Social Mediaduce new topic-aware hierarchical attention and copy mechanism, which directly copies appropriate words from both the source post and its references. Experiments on two public datasets demonstrate that TRGKG achieves state-of-the-art performance.
20#
發(fā)表于 2025-3-24 23:29:21 | 只看該作者
A GAT-Based Chinese Text Classification Model: Using of?Redical Guidance and?Association Between Chaures in text, this paper designs a model with context-awareness, which is capable of collecting information at a distance. Finally, we conduct extensive experiments, and the experimental results not only prove the superiority of our model, but also verify the effectiveness of the radical and GAT mod
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 04:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
启东市| 宁强县| 揭东县| 洪江市| 克什克腾旗| 德兴市| 武宣县| 永胜县| 恩施市| 惠东县| 大渡口区| 汤阴县| 三门峡市| 通许县| 舒城县| 乌恰县| 嘉峪关市| 佳木斯市| 义乌市| 兴海县| 诸暨市| 云南省| 沂源县| 会理县| 沭阳县| 全州县| 和林格尔县| 宁国市| 五华县| 六枝特区| 江源县| 绥宁县| 屯留县| 临清市| 万盛区| 海晏县| 革吉县| 平陆县| 定远县| 武陟县| 象山县|