找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Science, Engineering and Management; 16th International C Zhi Jin,Yuncheng Jiang,Wenjun Ma Conference proceedings 2023 The Editor

[復制鏈接]
樓主: otitis-externa
41#
發(fā)表于 2025-3-28 15:24:56 | 只看該作者
A Comparative Study of?Chatbot Response Generation: Traditional Approaches Versus Large Language Modwe compare the quality of responses provided by LLM-based chatbots with those provided by traditional conversation design. The results suggest that in some cases the use of LLMs could improve the quality of chatbot responses. The paper concludes by suggesting that a combination of approaches is the
42#
發(fā)表于 2025-3-28 20:41:07 | 只看該作者
43#
發(fā)表于 2025-3-29 00:18:25 | 只看該作者
44#
發(fā)表于 2025-3-29 03:04:43 | 只看該作者
45#
發(fā)表于 2025-3-29 09:30:16 | 只看該作者
46#
發(fā)表于 2025-3-29 14:28:31 | 只看該作者
ST-MAN: Spatio-Temporal Multimodal Attention Network for?Traffic Predictionroad network graph or external factors (e.g., weather, POIs) for prediction. However, in real traffic systems multimodal traffic data are collected from one or more co-located sensors, and data of non-target modality are not fully utilized by existing work. To overcome this limitation, we utilize mu
47#
發(fā)表于 2025-3-29 16:45:30 | 只看該作者
Sparse-View CT Reconstruction via?Implicit Neural Intensity Functionsfforts are contributing to SVCT reconstruction, but it is still a challenging task for reconstructing high-quality CT images from high sparse-view level. In this paper, we proposed Implicit Neural Intensity Functions (INIF) representation to improve reconstruction quality. Our proposed method repres
48#
發(fā)表于 2025-3-29 20:56:34 | 只看該作者
49#
發(fā)表于 2025-3-30 00:45:05 | 只看該作者
Cascade Sampling via?Dual Uncertainty for?Active Entity Alignmenty pairs as seed alignments to train an EA model. Recent effort has employed active learning (AL) to query more informative seed alignments for effective EA modeling at a lower cost. However, it still challenges existing AL methods to find and diversify seed alignments since true alignments themselve
50#
發(fā)表于 2025-3-30 08:05:32 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 15:26
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
沙湾县| 恭城| 老河口市| 民丰县| 赤峰市| 岑溪市| 库车县| 明水县| 昂仁县| 外汇| 宁武县| 天全县| 胶州市| 子洲县| 大港区| 元朗区| 健康| 大荔县| 郑州市| 万盛区| 莆田市| 山东| 舞钢市| 金湖县| 深水埗区| 盐城市| 腾冲县| 孟连| 庐江县| 渝北区| 正宁县| 安阳市| 永仁县| 山西省| 和龙市| 陇南市| 六枝特区| 吴桥县| 乌兰浩特市| 荣成市| 巩义市|