找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Science, Engineering and Management; 16th International C Zhi Jin,Yuncheng Jiang,Wenjun Ma Conference proceedings 2023 The Editor

[復制鏈接]
樓主: Ford
31#
發(fā)表于 2025-3-26 23:07:46 | 只看該作者
32#
發(fā)表于 2025-3-27 03:15:50 | 只看該作者
Multi-level and?Multi-interest User Interest Modeling for?News Recommendations the minimum interest modeling unit when modeling user’s interests. They ignored the low-level and high-level signals from user’s behaviors. In this paper, we propose a news recommendation method combined with multi-level and multi-interest user interest modeling, named MMRN. In contrast to existin
33#
發(fā)表于 2025-3-27 07:09:17 | 只看該作者
34#
發(fā)表于 2025-3-27 11:26:16 | 只看該作者
35#
發(fā)表于 2025-3-27 15:45:45 | 只看該作者
36#
發(fā)表于 2025-3-27 21:38:30 | 只看該作者
A 2D Entity Pair Tagging Scheme for Relation Triplet Extractiondes, extensive experiments on two public datasets widely used by many researchers are conducted, and the experimental results perform better than the state-of-the-art baselines overall and deliver consistent performance gains on complex scenarios of various overlapping patterns and multiple triplets
37#
發(fā)表于 2025-3-28 00:28:21 | 只看該作者
MAGNN-GC: Multi-head Attentive Graph Neural Networks with?Global Context for?Session-Based Recommendssion items with the learned global-level and local-level item embeddings using the multi-head attention mechanism. Additionally, we use the focal loss as a loss function to adjust sample weights and address the problem of imbalanced positive and negative samples during model training. Our experimen
38#
發(fā)表于 2025-3-28 03:07:31 | 只看該作者
Chinese Relation Extraction with?Bi-directional Context-Based Lattice LSTMention semantic interaction-enhanced (CSI) classifier promotes exchange of semantic information between hidden states from forward and backward perspectives for more comprehensive representations of relation types. In experiments conducted on two public datasets from distinct domains, our method yie
39#
發(fā)表于 2025-3-28 09:39:21 | 只看該作者
40#
發(fā)表于 2025-3-28 12:24:23 | 只看該作者
Debiased Contrastive Loss for?Collaborative Filteringof our methods in automatically mining the hard negative instances. Experimental results on three public benchmarks demonstrate that the proposed debiased contrastive loss can augment several existing MF and GNN-based CF models and outperform popular learning objectives in the recommendation. Additi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
芒康县| 祁门县| 弥渡县| 辽阳市| 南投县| 左权县| 舞钢市| 张掖市| 郓城县| 论坛| 宝鸡市| 曲沃县| 丹巴县| 五常市| 名山县| 明光市| 岳阳市| 手游| 东乡族自治县| 兴仁县| 闵行区| 石渠县| 翁牛特旗| 凤庆县| 乌审旗| 英山县| 通渭县| 兴安盟| 舒兰市| 江陵县| 隆子县| 井陉县| 逊克县| 宜宾市| 申扎县| 离岛区| 桃园县| 海淀区| 措美县| 施秉县| 永川市|