找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Science, Engineering and Management; 16th International C Zhi Jin,Yuncheng Jiang,Wenjun Ma Conference proceedings 2023 The Editor

[復(fù)制鏈接]
樓主: 搖尾乞憐
41#
發(fā)表于 2025-3-28 16:36:33 | 只看該作者
42#
發(fā)表于 2025-3-28 20:44:16 | 只看該作者
Advancing Domain Adaptation of?BERT by?Learning Domain Term SemanticsNatural Language Processing (NLP) tasks. However, these models yield an unsatisfactory results in domain scenarios, particularly in specialized fields like biomedical contexts, where they cannot amass sufficient semantics of domain terms. To tackle this problem, we present a semantic learning method
43#
發(fā)表于 2025-3-28 23:58:52 | 只看該作者
Deep Reinforcement Learning for?Group-Aware Robot Navigation in?Crowdspredictable. Previous research has addressed the problem of navigating in dense crowds by modelling the crowd and using a self-attention mechanism to assign different weights to each individual. However, in reality, crowds do not only consist of individuals, but more often appear as groups, so avoid
44#
發(fā)表于 2025-3-29 05:56:46 | 只看該作者
An Enhanced Distributed Algorithm for?Area Skyline Computation Based on?Apache Sparkta grows larger, these computations become slower and more challenging. To address this issue, we propose an efficient algorithm that uses Apache Spark, a platform for distributed processing, to perform area skyline computations faster and more salable. Our algorithm consists of three main phases: c
45#
發(fā)表于 2025-3-29 10:48:10 | 只看該作者
46#
發(fā)表于 2025-3-29 12:46:16 | 只看該作者
47#
發(fā)表于 2025-3-29 16:34:01 | 只看該作者
PRACM: Predictive Rewards for?Actor-Critic with?Mixing Function in?Multi-Agent Reinforcement Learninnificant progress in tackling cooperative problems with discrete action spaces. Nevertheless, many existing algorithms suffer from significant performance degradation when faced with large numbers of agents or more challenging tasks. Furthermore, some specific scenarios, such as cooperative environm
48#
發(fā)表于 2025-3-29 21:06:12 | 只看該作者
49#
發(fā)表于 2025-3-30 03:56:39 | 只看該作者
Research on?Remote Sensing Image Classification Based on?Transfer Learning and?Data Augmentation sensing image classification algorithm based on convolutional neural net-work architecture needs a significant amount of annotated datasets, and the creation of these training data is labor-intensive and time-consuming. Therefore, using a small sample dataset and a mix of transfer learning and data
50#
發(fā)表于 2025-3-30 04:52:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 19:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
余姚市| 台中县| 曲靖市| 南漳县| 哈巴河县| 辽阳县| 岗巴县| 清水县| 托克托县| 武穴市| 南开区| 东台市| 新昌县| 新密市| 安陆市| 安阳市| 碌曲县| 军事| 黔西| 宕昌县| 新营市| 修文县| 西安市| 正宁县| 炎陵县| 和林格尔县| 宁海县| 寻甸| 栖霞市| 颍上县| 安平县| 银川市| 郎溪县| 永顺县| 于都县| 石屏县| 万载县| 隆回县| 白玉县| 乐亭县| 乌拉特后旗|