找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Science, Engineering and Management; 11th International C Weiru Liu,Fausto Giunchiglia,Bo Yang Conference proceedings 2018 Spring

[復(fù)制鏈接]
樓主: ARSON
51#
發(fā)表于 2025-3-30 09:25:43 | 只看該作者
52#
發(fā)表于 2025-3-30 16:04:01 | 只看該作者
53#
發(fā)表于 2025-3-30 18:56:40 | 只看該作者
A Multi-objective Optimization Algorithm Based on Preference Three-Way Decompositionated set of the three sub-problems, a set of external preservation sets are formed so as to get the optimal set that the DM is interested in. Experimental results show that the proposed method can reduce the workload of the DM and obtain more accurately converge to the optimal frontiers of the optimization problems.
54#
發(fā)表于 2025-3-30 21:55:02 | 只看該作者
A Community-Division Based Algorithm for Finding Relations Among Linear Constraintslations among constraints in the same community through search. Experimental results show that the algorithm can effectively process large set of constraints, reduce time cost and find relations with higher quality.
55#
發(fā)表于 2025-3-31 03:52:57 | 只看該作者
A Parthenogenetic Algorithm for Deploying the Roadside Units in Vehicle NetworksPGA is proposed to solve the deployment problem. Compared with algorithms Delta-r and Delta-GA, in many .-Deployments, the Delta-uc and UCPGA algorithms respectively required fewer RSUs, which were proved by the experiments on the realistic mobility trace of Cologne, Germany.
56#
發(fā)表于 2025-3-31 05:39:27 | 只看該作者
57#
發(fā)表于 2025-3-31 09:52:55 | 只看該作者
ROSIE: Runtime Optimization of SPARQL Queries over RDF Using Incremental Evaluationn, as well as a mechanism to detect cardinality estimation error at runtime, ROSIE relieves the problem of biased cardinality propagation in an efficient way. Extensive experiments on real and benchmark data have shown that, compared to the state-of-the-arts, ROSIE consistently outperformed on complex queries by orders of magnitude.
58#
發(fā)表于 2025-3-31 14:41:32 | 只看該作者
59#
發(fā)表于 2025-3-31 18:26:04 | 只看該作者
60#
發(fā)表于 2025-3-31 23:43:26 | 只看該作者
The New Adaptive ETLBO Algorithms with K-Armed Bandit Model-KAB algorithm is effective and brings dramatic improvement compared with TLBO and ETLBO. Furthermore, a new perturbation strategy—discussion group strategy is proposed. And the experimental results indicate that the efficiency of AETLBO-KAB with discussion group algorithm exceeds AETLBO-KAB algorithm.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 16:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万盛区| 水富县| 兴安盟| 宜兴市| 双辽市| 新丰县| 鄂温| 临洮县| 土默特右旗| 平顺县| 平果县| 呈贡县| 日土县| 囊谦县| 尉犁县| 梁山县| 修武县| 六盘水市| 富民县| 卢氏县| 沙田区| 固原市| 万源市| 莱阳市| 阿拉善盟| 西青区| 炉霍县| 佳木斯市| 上栗县| 琼中| 长泰县| 黔东| 沧州市| 永州市| 涞源县| 简阳市| 饶平县| 吐鲁番市| 平和县| 抚松县| 绍兴市|