找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Science, Engineering and Management; 16th International C Zhi Jin,Yuncheng Jiang,Wenjun Ma Conference proceedings 2023 The Editor

[復制鏈接]
樓主: 兩邊在擴散
11#
發(fā)表于 2025-3-23 11:53:45 | 只看該作者
A Sparse Matrix Optimization Method for?Graph Neural Networks Traininguperior feature representation capabilities for graph data with non-Euclidean structures. These capabilities are enabled efficiently by sparse matrix-matrix multiplication (SPMM) and sparse matrix-vector multiplication (SPMV) that operate on sparse matrix representations of graph structures. However
12#
發(fā)表于 2025-3-23 16:21:20 | 只看該作者
Dual-Dimensional Refinement of?Knowledge Graph Embedding Representation within and between triples. However, existing methods primarily focus on a single dimension of entities or relations, limiting their ability to learn knowledge facts. To address this issue, this paper proposes a dual-dimension refined representation model. At the entity level, we perform residual s
13#
發(fā)表于 2025-3-23 20:30:03 | 只看該作者
14#
發(fā)表于 2025-3-23 23:42:59 | 只看該作者
Dynamic and?Static Feature-Aware Microservices Decomposition via?Graph Neural Networkstem into microservices can increase code reusability and reduce reconstruction costs. However, existing microservices decomposition approaches only utilize dynamic or static feature to represent the monolithic system, leading to low coverage of classes and inadequate information. To address these is
15#
發(fā)表于 2025-3-24 05:50:40 | 只看該作者
16#
發(fā)表于 2025-3-24 07:35:23 | 只看該作者
Low Redundancy Learning for?Unsupervised Multi-view Feature Selections on the correlation between features and data category structure, while ignoring the redundancy between features. In this paper, we propose a multi-view feature selection method based on low redundancy learning, which introduces and automatically assigns the weight of feature redundancy in each vie
17#
發(fā)表于 2025-3-24 12:39:02 | 只看該作者
Dynamic Feed-Forward LSTMo this end, we propose the Dynamic Feed-Forward LSTM (D-LSTM). Specifically, our D-LSTM first expands the capabilities of hidden states by assigning an exclusive state vector to each word. Then, the Dynamic Additive Attention (DAA) method is utilized to adaptively compress local context words into a
18#
發(fā)表于 2025-3-24 16:02:44 | 只看該作者
Black-Box Adversarial Attack on?Graph Neural Networks Based on?Node Domain Knowledgepplication of GNNs in various graph tasks, it is particularly important to study the principles and implementation of graph adversarial attacks for understanding the robustness of GNNs. Previous studies have attempted to reduce the prediction accuracy of GNNs by adding small perturbations to the gra
19#
發(fā)表于 2025-3-24 22:25:15 | 只看該作者
Tian Wang,Zhiguang Wang,Rongliang Wang,Dawei Li,Qiang Luw?rtsspirale. Zun?chst zur Abw?rtsspirale: Stadterneuerung und Regionalentwicklung sind normalerweise eigendynamische Prozesse, bei denen sich Quartiere auf neue Gegebenheiten durch den Druck des Marktes ausrichten und eine Modernisierung ohne künstliche Steuerung oder finanzielle Anreize stattfinde
20#
發(fā)表于 2025-3-25 02:13:32 | 只看該作者
Long Chen,Mingjian Guang,Junli Wang,Chungang Yanw?rtsspirale. Zun?chst zur Abw?rtsspirale: Stadterneuerung und Regionalentwicklung sind normalerweise eigendynamische Prozesse, bei denen sich Quartiere auf neue Gegebenheiten durch den Druck des Marktes ausrichten und eine Modernisierung ohne künstliche Steuerung oder finanzielle Anreize stattfinde
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
铜川市| 绥棱县| 宝山区| 阿勒泰市| 龙井市| 峨山| 黔南| 梁平县| 禄劝| 黎川县| 望都县| 闽清县| 集贤县| 平利县| 洛川县| 晴隆县| 滨州市| 遵化市| 祥云县| 江西省| 汉源县| 济南市| 获嘉县| 陆川县| 凤庆县| 临西县| 安新县| 九寨沟县| 剑川县| 获嘉县| 水城县| 塔城市| 绍兴县| 水城县| 隆德县| 嘉义市| 浠水县| 昭觉县| 西乡县| 平利县| 衡阳市|