找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Science, Engineering and Management; 9th International Co Franz Lehner,Nora Fteimi Conference proceedings 2016 Springer Internati

[復制鏈接]
樓主: 徽章
51#
發(fā)表于 2025-3-30 09:52:21 | 只看該作者
Yang Yan,Tingwen Liu,Li Guo,Jiapeng Zhao,Jinqiao Shi and retirement savings are low for those throughout the life course, made especially concerning for those who are near or already in retirement and for members of more vulnerable groups. This chapter outlines the goals of one of the 12 Grand Challenges for Social Work—to Build Financial Capability
52#
發(fā)表于 2025-3-30 16:13:38 | 只看該作者
BOWL: Bag of Word Clusters Text Representation Using Word Embeddings text representation methods. Although the BOW and TF-IDF are simple and perform well in tasks like classification and clustering, its representation efficiency is extremely low. Besides, word level semantic similarity is not captured which results failing to capture text level similarity in many si
53#
發(fā)表于 2025-3-30 20:15:45 | 只看該作者
54#
發(fā)表于 2025-3-30 22:40:14 | 只看該作者
55#
發(fā)表于 2025-3-31 03:32:18 | 只看該作者
A Practical Method of Identifying Chinese Metaphor Phrases from Corpus, and information retrieval) are affected if metaphors can not be identified appropriately. This paper presents a?three-phase method for recognizing Chinese metaphor phrases from a large-scale corpus. First, we acquire the context of every?candidate phrase. Then hierarchical clustering is used to cl
56#
發(fā)表于 2025-3-31 07:31:49 | 只看該作者
57#
發(fā)表于 2025-3-31 09:53:50 | 只看該作者
Increasing Topic Coherence by Aggregating Topic Modelsence than individual models. When generating a topic model a number of parameters must be specified. Depending on the parameters chosen the resulting topics can be very general or very specific. In this paper the process of aggregating multiple topic models generated using different parameters is in
58#
發(fā)表于 2025-3-31 15:06:48 | 只看該作者
Learning Chinese-Japanese Bilingual Word Embedding by Using Common Characterson, word sense disambiguation and so on. However, no model has been universally accepted for learning bilingual word embedding. In this work, we propose a novel model named CJ-BOC to learn Chinese-Japanese word embeddings. Given Chinese and Japanese share a large portion of common characters, we exp
59#
發(fā)表于 2025-3-31 19:18:15 | 只看該作者
Analyzing Topic-Sentiment and Topic Evolution over Time from Social Mediareviews or ratings, those annotations are more intuitive to express the sentiment of the users. Topic model is proved more effective to analyze the text information, however, most existing topic models focus on either extracting static topic sentiment or tracking topics over time but ignoring sentim
60#
發(fā)表于 2025-3-31 21:58:30 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 04:21
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
玉林市| 来安县| 内江市| 安陆市| 巴中市| 大新县| 米脂县| 花莲县| 孟津县| 北海市| 宜宾市| 岳阳市| 尤溪县| 绥芬河市| 沧州市| 休宁县| 岑巩县| 周宁县| 萝北县| 师宗县| 泉州市| 平江县| 赤城县| 上思县| 乌兰县| 闽清县| 浏阳市| 栾城县| 平南县| 城口县| 永宁县| 宣武区| 阜阳市| 陆河县| 六盘水市| 吴旗县| 千阳县| 胶州市| 盘山县| 镇江市| 临城县|