找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Management and Acquisition for Intelligent Systems; 16th Pacific Rim Kno Kouzou Ohara,Quan Bai Conference proceedings 2019 Spring

[復(fù)制鏈接]
查看: 29286|回復(fù): 60
樓主
發(fā)表于 2025-3-21 16:26:50 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Knowledge Management and Acquisition for Intelligent Systems
副標(biāo)題16th Pacific Rim Kno
編輯Kouzou Ohara,Quan Bai
視頻videohttp://file.papertrans.cn/544/543968/543968.mp4
叢書(shū)名稱(chēng)Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Knowledge Management and Acquisition for Intelligent Systems; 16th Pacific Rim Kno Kouzou Ohara,Quan Bai Conference proceedings 2019 Spring
描述This book constitutes the proceedings of the 16th International Workshop on Knowledge Management and Acquisition for Intelligent Systems, PKAW 2019, held in Cuvu, Fiji, in August 2019..The 9 full papers and 7 short papers included in this volume were carefully reviewed and selected from 38 initial submissions. The papers cover advanced research work that contributes to the technical and theoretical aspects in the ?elds of intelligent systems/agents, natural language processing, and applications of machine learning techniques including Deep Learning to real world problems..
出版日期Conference proceedings 2019
關(guān)鍵詞artificial intelligence; clustering; computer architecture; computer networks; data mining; natural langu
版次1
doihttps://doi.org/10.1007/978-3-030-30639-7
isbn_softcover978-3-030-30638-0
isbn_ebook978-3-030-30639-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書(shū)目名稱(chēng)Knowledge Management and Acquisition for Intelligent Systems影響因子(影響力)




書(shū)目名稱(chēng)Knowledge Management and Acquisition for Intelligent Systems影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Knowledge Management and Acquisition for Intelligent Systems網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Knowledge Management and Acquisition for Intelligent Systems網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Knowledge Management and Acquisition for Intelligent Systems被引頻次




書(shū)目名稱(chēng)Knowledge Management and Acquisition for Intelligent Systems被引頻次學(xué)科排名




書(shū)目名稱(chēng)Knowledge Management and Acquisition for Intelligent Systems年度引用




書(shū)目名稱(chēng)Knowledge Management and Acquisition for Intelligent Systems年度引用學(xué)科排名




書(shū)目名稱(chēng)Knowledge Management and Acquisition for Intelligent Systems讀者反饋




書(shū)目名稱(chēng)Knowledge Management and Acquisition for Intelligent Systems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:51:36 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:02:07 | 只看該作者
Toxicity Prediction by Multimodal Deep Learning,mance that could go beyond individual performance of each data representation or each neural network type. On a standard toxicity benchmark, our proposed method obtains significantly better accuracy levels than that by the state-of-the-art toxicity prediction methods.
地板
發(fā)表于 2025-3-22 04:52:01 | 只看該作者
Context-Aware Influence Diffusion in Online Social Networks,nce propagation patterns under different scenarios. The results show that context-aware influence diffusion turns out to be an experienced model, where beliefs formed through users’ past experiences affect the adoption of influences.
5#
發(fā)表于 2025-3-22 10:38:41 | 只看該作者
Network Embedding via Link Strength Adjusted Random Walk,pture the structural information. Further more, the strengths of links are updated using the embedding output as feedback. Through experiments we have verified that our method out performs state-of-the-art network embedding methods, in node classification tasks and link prediction tasks.
6#
發(fā)表于 2025-3-22 12:56:43 | 只看該作者
7#
發(fā)表于 2025-3-22 17:26:32 | 只看該作者
Estimating Difficulty Score of Visual Search in Images for Semi-supervised Object Detection,human annotators in PASCAL VOC2012. Eventually, we demostrate with experiments that our method has an ability of selecting suitable samples to improve the performance of detectors in a semi-supervised task.
8#
發(fā)表于 2025-3-22 21:21:27 | 只看該作者
9#
發(fā)表于 2025-3-23 02:49:13 | 只看該作者
10#
發(fā)表于 2025-3-23 09:28:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 23:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
榆中县| 逊克县| 河北省| 额尔古纳市| 夏河县| 青州市| 丰宁| 叙永县| 巨野县| 井冈山市| 桦南县| 平定县| 大竹县| 额尔古纳市| 敦煌市| 尚志市| 濮阳市| 六盘水市| 西贡区| 岗巴县| 微山县| 枣阳市| 西吉县| 宣城市| 藁城市| 武定县| 吉木乃县| 宁化县| 宣汉县| 福泉市| 定远县| 永嘉县| 阳山县| 玉溪市| 乌拉特中旗| 海安县| 沽源县| 图木舒克市| 崇阳县| 昭苏县| 江源县|