找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Graph and Semantic Computing: Knowledge Graph and Cognitive Intelligence; 5th China Conference Huajun Chen,Kang Liu,Lei Hou Confe

[復(fù)制鏈接]
查看: 53508|回復(fù): 55
樓主
發(fā)表于 2025-3-21 17:31:56 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Knowledge Graph and Semantic Computing: Knowledge Graph and Cognitive Intelligence
副標(biāo)題5th China Conference
編輯Huajun Chen,Kang Liu,Lei Hou
視頻videohttp://file.papertrans.cn/544/543934/543934.mp4
叢書名稱Communications in Computer and Information Science
圖書封面Titlebook: Knowledge Graph and Semantic Computing: Knowledge Graph and Cognitive Intelligence; 5th China Conference Huajun Chen,Kang Liu,Lei Hou Confe
描述This book constitutes the refereed proceedings of the 5th China Conference on Knowledge Graph and Semantic Computing, CCKS 2020, held in Nanchang, China, in November 2020.?.The 26 revised full papers presented were carefully reviewed and selected from 173 submissions. The papers are organized in topical sections on ?knowledge extraction: lexical and entity; knowledge extraction: relation; knowledge extraction: event; knowledge applications: question answering, dialogue, decision support, and recommendation..
出版日期Conference proceedings 2021
關(guān)鍵詞artificial intelligence; character recognition; computational linguistics; computer systems; data mining
版次1
doihttps://doi.org/10.1007/978-981-16-1964-9
isbn_softcover978-981-16-1963-2
isbn_ebook978-981-16-1964-9Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer Nature Singapore Pte Ltd. 2021
The information of publication is updating

書目名稱Knowledge Graph and Semantic Computing: Knowledge Graph and Cognitive Intelligence影響因子(影響力)




書目名稱Knowledge Graph and Semantic Computing: Knowledge Graph and Cognitive Intelligence影響因子(影響力)學(xué)科排名




書目名稱Knowledge Graph and Semantic Computing: Knowledge Graph and Cognitive Intelligence網(wǎng)絡(luò)公開度




書目名稱Knowledge Graph and Semantic Computing: Knowledge Graph and Cognitive Intelligence網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Knowledge Graph and Semantic Computing: Knowledge Graph and Cognitive Intelligence被引頻次




書目名稱Knowledge Graph and Semantic Computing: Knowledge Graph and Cognitive Intelligence被引頻次學(xué)科排名




書目名稱Knowledge Graph and Semantic Computing: Knowledge Graph and Cognitive Intelligence年度引用




書目名稱Knowledge Graph and Semantic Computing: Knowledge Graph and Cognitive Intelligence年度引用學(xué)科排名




書目名稱Knowledge Graph and Semantic Computing: Knowledge Graph and Cognitive Intelligence讀者反饋




書目名稱Knowledge Graph and Semantic Computing: Knowledge Graph and Cognitive Intelligence讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:27:04 | 只看該作者
https://doi.org/10.1007/978-981-16-1964-9artificial intelligence; character recognition; computational linguistics; computer systems; data mining
板凳
發(fā)表于 2025-3-22 03:01:43 | 只看該作者
地板
發(fā)表于 2025-3-22 06:31:09 | 只看該作者
5#
發(fā)表于 2025-3-22 09:35:16 | 只看該作者
Chinese Punctuation Prediction with Adaptive Attention and Dependency Treeon prediction outperforms BiLSTM+CRF with a gain of 0.292% and 0.127% on accuracy in two datasets respectively. The second proposal outperforms existing methods with a gap of above 4.5% of accuracy and reaches state-of-the-art performance in two datasets.
6#
發(fā)表于 2025-3-22 16:10:32 | 只看該作者
7#
發(fā)表于 2025-3-22 18:35:43 | 只看該作者
Improving Relation Extraction Using Semantic Role and Multi-task Learning a Macro-F1 score of 89.96% on the benchmark dataset, outperforming most of the existing methods. More ablation experiments on two different datasets show that semantic role information and multi-task learning can help improve the relation extraction.
8#
發(fā)表于 2025-3-22 23:16:07 | 只看該作者
9#
發(fā)表于 2025-3-23 02:03:41 | 只看該作者
10#
發(fā)表于 2025-3-23 07:08:04 | 只看該作者
IBRE: An Incremental Bootstrapping Approach for Chinese Appointment and Dismissal Relation Extractioposed to get high accuracy. Finally, we augment seeds with corrected tuples and apply incremental learning to continually improve performance with least training cost. We build a dataset called ADNP (Appointment and Dismissal News from People.cn) and compare our approach with baselines. Comparison r
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 17:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灵台县| 珲春市| 舞钢市| 临桂县| 苍溪县| 黄浦区| 大化| 思南县| 泽库县| 栾城县| 大厂| 伊通| 大余县| 岳西县| 抚宁县| 玉龙| 志丹县| 紫金县| 淮南市| 前郭尔| 东乡县| 元朗区| 西昌市| 侯马市| 琼结县| 天镇县| 襄樊市| 元阳县| 阳泉市| 常山县| 石门县| 邮箱| 东台市| 庆云县| 慈利县| 中牟县| 政和县| 呼和浩特市| 博湖县| 珲春市| 河北省|