找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Graph and Semantic Computing: Knowledge Computing and Language Understanding; 4th China Conference Xiaoyan Zhu,Bing Qin,Longhua Q

[復(fù)制鏈接]
樓主: 威風(fēng)
21#
發(fā)表于 2025-3-25 04:20:47 | 只看該作者
22#
發(fā)表于 2025-3-25 07:36:30 | 只看該作者
23#
發(fā)表于 2025-3-25 12:46:36 | 只看該作者
24#
發(fā)表于 2025-3-25 17:32:04 | 只看該作者
Incorporating Domain and Range of Relations for Knowledge Graph Completion,nowledge graph related tasks like link prediction. Knowledge graph embedding methods embed entities and relations into a continuous vector space and accomplish link prediction via calculation with embeddings. However, some embedding methods only focus on information of triples and ignore individual
25#
發(fā)表于 2025-3-25 22:14:36 | 只看該作者
REKA: Relation Extraction with Knowledge-Aware Attention,truct labeled data to reduce the manual annotation effort. This method usually results in many instances with incorrect labels. In addition, most of existing relation extraction methods merely rely on the textual content of sentences to extract relation. In fact, many knowledge graphs are off-the-sh
26#
發(fā)表于 2025-3-26 02:50:18 | 只看該作者
27#
發(fā)表于 2025-3-26 05:00:48 | 只看該作者
A Survey of Question Answering over Knowledge Base,y. The core task of KBQA is to understand the real semantics of a natural language question and extract it to match in the whole semantics of a knowledge base. However, it is exactly a big challenge due to variable semantics of natural language questions in a real world. Recently, there are more and
28#
發(fā)表于 2025-3-26 12:23:21 | 只看該作者
29#
發(fā)表于 2025-3-26 13:30:11 | 只看該作者
A Practical Framework for Evaluating the Quality of Knowledge Graph,hs were built using automated construction tools and via crowdsourcing. The graph may contain significant amount of syntax and semantics errors that great impact its quality. A low quality knowledge graph produce low quality application that is built on it. Therefore, evaluating quality of knowledge
30#
發(fā)表于 2025-3-26 17:24:20 | 只看該作者
Entity Subword Encoding for Chinese Long Entity Recognition,re-defined categories. For Chinese NER task, recognition of long entities has not been well addressed yet. When character sequences of entities become longer, Chinese NER becomes more difficult with existing character-based and word-based neural methods. In this paper, we investigate Chinese NER met
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 13:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
修水县| 屏东县| 南澳县| 江山市| 陵水| 大悟县| 麻城市| 博湖县| 安丘市| 长白| 杭锦后旗| 自治县| 康乐县| 大兴区| 大名县| 烟台市| 江孜县| 丰台区| 高州市| 长武县| 曲水县| 兰州市| 广宗县| 嫩江县| 开鲁县| 甘南县| 城固县| 定兴县| 穆棱市| 如皋市| 嫩江县| 建平县| 岳西县| 旌德县| 镇江市| 宝清县| 武乡县| 南召县| 诸城市| 酒泉市| 长春市|