找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Graph and Semantic Computing. Knowledge Computing and Language Understanding; Third China Conferen Jun Zhao,Frank van Harmelen,Xi

[復(fù)制鏈接]
查看: 45745|回復(fù): 52
樓主
發(fā)表于 2025-3-21 17:52:13 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Knowledge Graph and Semantic Computing. Knowledge Computing and Language Understanding
副標(biāo)題Third China Conferen
編輯Jun Zhao,Frank van Harmelen,Xianyong Li
視頻videohttp://file.papertrans.cn/544/543928/543928.mp4
叢書名稱Communications in Computer and Information Science
圖書封面Titlebook: Knowledge Graph and Semantic Computing. Knowledge Computing and Language Understanding; Third China Conferen Jun Zhao,Frank van Harmelen,Xi
描述This book constitutes the refereed proceedings of the Third China Conference on Knowledge Graph and Semantic Computing, CCKS 2018, held in Tianjin, China, in August 2018..The 27 revised full papers and 2 revised short papers presented were carefully reviewed and selected from 101 submissions.?The papers cover?wide research fields including the knowledge graph,?information extraction,?knowledge representation and reasoning,?linked data..
出版日期Conference proceedings 2019
關(guān)鍵詞artificial intelligence; data mining; knowledge base; knowledge-based system; natural language processin
版次1
doihttps://doi.org/10.1007/978-981-13-3146-6
isbn_softcover978-981-13-3145-9
isbn_ebook978-981-13-3146-6Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer Nature Singapore Pte Ltd. 2019
The information of publication is updating

書目名稱Knowledge Graph and Semantic Computing. Knowledge Computing and Language Understanding影響因子(影響力)




書目名稱Knowledge Graph and Semantic Computing. Knowledge Computing and Language Understanding影響因子(影響力)學(xué)科排名




書目名稱Knowledge Graph and Semantic Computing. Knowledge Computing and Language Understanding網(wǎng)絡(luò)公開度




書目名稱Knowledge Graph and Semantic Computing. Knowledge Computing and Language Understanding網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Knowledge Graph and Semantic Computing. Knowledge Computing and Language Understanding被引頻次




書目名稱Knowledge Graph and Semantic Computing. Knowledge Computing and Language Understanding被引頻次學(xué)科排名




書目名稱Knowledge Graph and Semantic Computing. Knowledge Computing and Language Understanding年度引用




書目名稱Knowledge Graph and Semantic Computing. Knowledge Computing and Language Understanding年度引用學(xué)科排名




書目名稱Knowledge Graph and Semantic Computing. Knowledge Computing and Language Understanding讀者反饋




書目名稱Knowledge Graph and Semantic Computing. Knowledge Computing and Language Understanding讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:36:23 | 只看該作者
Conference proceedings 2019ina, in August 2018..The 27 revised full papers and 2 revised short papers presented were carefully reviewed and selected from 101 submissions.?The papers cover?wide research fields including the knowledge graph,?information extraction,?knowledge representation and reasoning,?linked data..
板凳
發(fā)表于 2025-3-22 02:58:53 | 只看該作者
Communications in Computer and Information Sciencehttp://image.papertrans.cn/k/image/543928.jpg
地板
發(fā)表于 2025-3-22 08:10:51 | 只看該作者
5#
發(fā)表于 2025-3-22 12:40:42 | 只看該作者
6#
發(fā)表于 2025-3-22 14:57:26 | 只看該作者
7#
發(fā)表于 2025-3-22 17:04:54 | 只看該作者
Distant Supervision for Chinese Temporal Tagging,cyclopedias) to generate a dataset for model training. Results of our experiments on encyclopedia text and TempEval2 dataset indicate that the method is feasible. While obtaining acceptable tagging performance, our approach does not involve designing manual patterns as rule-based ones do, does not i
8#
發(fā)表于 2025-3-23 00:31:20 | 只看該作者
9#
發(fā)表于 2025-3-23 01:47:42 | 只看該作者
Deep Learning for Knowledge-Driven Ontology Stream Prediction,ology stream, and then we combine ontology stream and numerical analysis in the deep learning model. Furthermore, we also enrich ontology stream in STBNet, where Convolutional Neural Networks (CNNs) are incorporated in learning lexical representations of words in the text. The experiments show that
10#
發(fā)表于 2025-3-23 06:01:13 | 只看該作者
Hualong Zhang,Liting Liu,Shuzhi Cheng,Wenxuan Shiungen dargestellt. Das breite Methodenspektrum wurde um die Kapitel Oberfl?chen-Nuklear-Magnetische Resonanz zur Grundwassersuche und NMR-Laborverfahren erweitert. Ein neues Kapitel In-situ-überwachung stellt m978-3-540-26606-8
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 00:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
崇礼县| 安岳县| 琼海市| 瓦房店市| 乌拉特前旗| 大宁县| 东阿县| 合水县| 昭通市| 苏州市| 山西省| 徐汇区| 偏关县| 石家庄市| 克东县| 石狮市| 福建省| 池州市| 宿迁市| 大庆市| 北票市| 台北市| 清镇市| 澄迈县| 永年县| 新津县| 全州县| 涿州市| 云安县| 宿松县| 台北县| 河东区| 湘潭市| 文安县| 黔东| 南漳县| 宁强县| 本溪市| 江油市| 叶城县| 榆社县|