找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Engineering and Knowledge Management. Methods, Models, and Tools; 12th International C Rose Dieng,Olivier Corby Conference procee

[復制鏈接]
樓主: 啞劇表演
41#
發(fā)表于 2025-3-28 16:43:31 | 只看該作者
Jaap Gordijn,Hans Akkermans,Hans Van Vliet of displaying the information produced by a cr scanner consists of showing two-dimensional images, corresponding to maps of the X-ray attenuation coefficient in slices through the body. (Since different tissue types attenuate X-rays differently, such maps provide a good visualization of what is in
42#
發(fā)表于 2025-3-28 22:36:55 | 只看該作者
Knowledge Engineering and Knowledge Management. Methods, Models, and Tools12th International C
43#
發(fā)表于 2025-3-29 01:55:12 | 只看該作者
Rose Dieng,Olivier CorbyIncludes supplementary material:
44#
發(fā)表于 2025-3-29 03:39:22 | 只看該作者
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/k/image/543905.jpg
45#
發(fā)表于 2025-3-29 08:23:37 | 只看該作者
46#
發(fā)表于 2025-3-29 12:46:47 | 只看該作者
47#
發(fā)表于 2025-3-29 16:26:54 | 只看該作者
48#
發(fā)表于 2025-3-29 23:06:39 | 只看該作者
introduces a new geometric vision of continued fractions. It covers several applications to questions related to such areas as Diophantine approximation, algebraic number theory, and toric geometry. The second edition now includes a geometric approach to Gauss Reduction Theory, classification of in
49#
發(fā)表于 2025-3-30 01:21:40 | 只看該作者
50#
發(fā)表于 2025-3-30 05:18:06 | 只看該作者
Natalya Fridman Noy,Ray W. Fergerson,Mark A. Musensupplementary material: .Traditionally a subject of number theory, continued fractions appear in dynamical systems, algebraic geometry, topology, and even celestial mechanics. The rise of computational geometry has resulted in renewed interest in multidimensional generalizations of continued fractio
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-5 17:55
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
肃宁县| 闻喜县| 磐石市| 巴楚县| 和平县| 武隆县| 阿合奇县| 和林格尔县| 灵山县| 蕉岭县| 松江区| 慈溪市| 广河县| 冷水江市| 南乐县| 赤城县| 攀枝花市| 渑池县| 札达县| 磐安县| 岢岚县| 麻城市| 西城区| 平原县| 怀柔区| 广平县| 大安市| 安义县| 施甸县| 普安县| 兴安盟| 额尔古纳市| 巩义市| 曲阜市| 九江市| 陈巴尔虎旗| 固阳县| 思茅市| 上蔡县| 内乡县| 连州市|