找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Discovery in Inductive Databases; 5th International Wo Sa?o D?eroski,Jan Struyf Conference proceedings 2007 Springer-Verlag Berli

[復(fù)制鏈接]
查看: 55016|回復(fù): 59
樓主
發(fā)表于 2025-3-21 16:37:01 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Knowledge Discovery in Inductive Databases
副標(biāo)題5th International Wo
編輯Sa?o D?eroski,Jan Struyf
視頻videohttp://file.papertrans.cn/544/543875/543875.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Knowledge Discovery in Inductive Databases; 5th International Wo Sa?o D?eroski,Jan Struyf Conference proceedings 2007 Springer-Verlag Berli
出版日期Conference proceedings 2007
關(guān)鍵詞Pattern Mining; classification; clustering; constraint-based mining; data management; data mining; databas
版次1
doihttps://doi.org/10.1007/978-3-540-75549-4
isbn_softcover978-3-540-75548-7
isbn_ebook978-3-540-75549-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2007
The information of publication is updating

書目名稱Knowledge Discovery in Inductive Databases影響因子(影響力)




書目名稱Knowledge Discovery in Inductive Databases影響因子(影響力)學(xué)科排名




書目名稱Knowledge Discovery in Inductive Databases網(wǎng)絡(luò)公開度




書目名稱Knowledge Discovery in Inductive Databases網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Knowledge Discovery in Inductive Databases被引頻次




書目名稱Knowledge Discovery in Inductive Databases被引頻次學(xué)科排名




書目名稱Knowledge Discovery in Inductive Databases年度引用




書目名稱Knowledge Discovery in Inductive Databases年度引用學(xué)科排名




書目名稱Knowledge Discovery in Inductive Databases讀者反饋




書目名稱Knowledge Discovery in Inductive Databases讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:35:59 | 只看該作者
Frequent Pattern Mining and Knowledge Indexing Based on Zero-Suppressed BDDserns but also compactly indexes the output data in main memory. After mining, the pattern results can be analyzed efficiently by using algebraic operations. BDD-based data structures have previously been used successfully in VLSI logic design, but our method is the first practical application of BDD-based techniques in the data mining area.
板凳
發(fā)表于 2025-3-22 02:12:50 | 只看該作者
Three Strategies for Concurrent Processing of Frequent Itemset Queries Using FP-Growthications. The second is an implementation of the general idea of Common Counting for FP-growth. The last is a completely new strategy, motivated by identified shortcomings of the previous two strategies in the context of FP-growth.
地板
發(fā)表于 2025-3-22 05:31:48 | 只看該作者
Mining Bi-sets in Numerical Datairectly numerical data to extract collections of relevant bi-sets, i.e., couples of associated sets of objects and attributes which satisfy some user-defined constraints. Not only we propose a new pattern domain but also we introduce a complete solver for computing the so-called numerical bi-sets. Preliminary experimental validation is given.
5#
發(fā)表于 2025-3-22 08:45:21 | 只看該作者
Analysis of Time Series Data with Predictive Clustering Treeshows that Clus-TS is able to cluster genes with similar responses, and to predict the time series based on the description of a gene. Clus-TS is part of a larger project where the goal is to investigate how global models can be combined with inductive databases.
6#
發(fā)表于 2025-3-22 16:19:58 | 只看該作者
Integrating Decision Tree Learning into Inductive Databasesrmat proposed earlier for association rules, and queryable using standard SQL; and we present a prototype system in which part of the needed functionality is implemented. In particular, we have developed an exhaustive tree learning algorithm able to answer a wide range of constrained queries.
7#
發(fā)表于 2025-3-22 19:25:52 | 只看該作者
8#
發(fā)表于 2025-3-22 22:12:46 | 只看該作者
9#
發(fā)表于 2025-3-23 02:12:17 | 只看該作者
Extracting Trees of Quantitative Serial Episodeshaviors among the occurrences, according to the duration of the . steps, and providing quantitative bounds of these durations organized in a tree structure; (2) the possibility to extract them in a complete way; and (3) to perform such extractions at the cost of a limited overhead with respect to the extraction of standard episodes.
10#
發(fā)表于 2025-3-23 06:57:53 | 只看該作者
IQL: A Proposal for an Inductive Query Languagetives. The language integrates ideas from several other declarative programming languages, such as pattern matching and function typing. We hope that it will be useful as an overall specification language for integrating data mining systems and principles.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灵武市| 宿松县| 高淳县| 崇文区| 贵南县| 尚志市| 胶南市| 交口县| 苏尼特左旗| 安泽县| 建昌县| 贞丰县| 齐齐哈尔市| 太康县| 新蔡县| 扎赉特旗| 平陆县| 若羌县| 上林县| 泰顺县| 永昌县| 滕州市| 贺兰县| 香河县| 靖江市| 贞丰县| 乐都县| 土默特左旗| 石首市| 岗巴县| 分宜县| 丰都县| 新河县| 广饶县| 曲阜市| 凯里市| 南丹县| 渑池县| 凤阳县| 调兵山市| 宝坻区|