找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Discovery in Databases: PKDD 2003; 7th European Confere Nada Lavra?,Dragan Gamberger,Hendrik Blockeel Conference proceedings 2003

[復制鏈接]
查看: 20698|回復: 63
樓主
發(fā)表于 2025-3-21 18:07:30 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Knowledge Discovery in Databases: PKDD 2003
副標題7th European Confere
編輯Nada Lavra?,Dragan Gamberger,Hendrik Blockeel
視頻videohttp://file.papertrans.cn/544/543870/543870.mp4
概述Includes supplementary material:
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Knowledge Discovery in Databases: PKDD 2003; 7th European Confere Nada Lavra?,Dragan Gamberger,Hendrik Blockeel Conference proceedings 2003
描述The proceedings of ECML/PKDD2003 are published in two volumes: the P- ceedings of the 14th European Conference on Machine Learning (LNAI 2837) and the Proceedings of the 7th European Conference on Principles and Practice of Knowledge Discovery in Databases (LNAI 2838). The two conferences were held on September 22–26, 2003 in Cavtat, a small tourist town in the vicinity of Dubrovnik, Croatia. As machine learning and knowledge discovery are two highly related ?elds, theco-locationofbothconferencesisbene?cialforbothresearchcommunities.In Cavtat, ECML and PKDD were co-located for the third time in a row, following the successful co-location of the two European conferences in Freiburg (2001) and Helsinki (2002). The co-location of ECML2003 and PKDD2003 resulted in a joint program for the two conferences, including paper presentations, invited talks, tutorials, and workshops. Out of 332 submitted papers, 40 were accepted for publication in the ECML2003proceedings,and40wereacceptedforpublicationinthePKDD2003 proceedings. All the submitted papers were reviewed by three referees. In ad- tion to submitted papers, the conference program consisted of four invited talks, four tutorials, seven
出版日期Conference proceedings 2003
關鍵詞Bayesian network; classification; data mining; database; knowledge discovery; learning; logic; pattern mini
版次1
doihttps://doi.org/10.1007/b13634
isbn_softcover978-3-540-20085-7
isbn_ebook978-3-540-39804-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2003
The information of publication is updating

書目名稱Knowledge Discovery in Databases: PKDD 2003影響因子(影響力)




書目名稱Knowledge Discovery in Databases: PKDD 2003影響因子(影響力)學科排名




書目名稱Knowledge Discovery in Databases: PKDD 2003網絡公開度




書目名稱Knowledge Discovery in Databases: PKDD 2003網絡公開度學科排名




書目名稱Knowledge Discovery in Databases: PKDD 2003被引頻次




書目名稱Knowledge Discovery in Databases: PKDD 2003被引頻次學科排名




書目名稱Knowledge Discovery in Databases: PKDD 2003年度引用




書目名稱Knowledge Discovery in Databases: PKDD 2003年度引用學科排名




書目名稱Knowledge Discovery in Databases: PKDD 2003讀者反饋




書目名稱Knowledge Discovery in Databases: PKDD 2003讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-22 00:04:24 | 只看該作者
Two-Eyed Algorithms and Problemshe algorithm is processing. The main example I discuss is RF/tools, a collection of algorithms for classification, regression and multiple dependent outputs. The last algorithm is a preliminary version and further progress depends on solving some fascinating questions of the characterization of depe
板凳
發(fā)表于 2025-3-22 00:36:56 | 只看該作者
Next Generation Data Mining Tools: Power Laws and Self-similarity for Graphs, Streams and Traditionatribution of a company’s customers in geographical space? How long should we expect a nearest-neighbor search to take, when there are 100 attributes per patient or customer record? The traditional assumptions (uniformity, independence, Poisson arrivals, Gaussian distributions), often fail miserably.
地板
發(fā)表于 2025-3-22 05:25:18 | 只看該作者
5#
發(fā)表于 2025-3-22 09:04:47 | 只看該作者
Efficient Statistical Pruning of Association Rulesg of hundreds to millions of patterns, of which few are likely of interest. In this paper we present a probabilistic metric to filter association rules that can help highlight the important structure in the data. The proposed filtering technique can be combined with maximal association mining algori
6#
發(fā)表于 2025-3-22 13:22:46 | 只看該作者
Majority Classification by Means of Association Rulessignment of the class label on a single classification rule. In this work we propose the assignment of the class label based on simple majority voting among a group of rules matching the test case..We propose a new algorithm,., which is based on previously proposed algorithm ... ... performed a redu
7#
發(fā)表于 2025-3-22 17:27:48 | 只看該作者
8#
發(fā)表于 2025-3-22 23:36:29 | 只看該作者
9#
發(fā)表于 2025-3-23 03:04:56 | 只看該作者
10#
發(fā)表于 2025-3-23 07:22:21 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-11 04:40
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
广饶县| 来安县| 刚察县| 阳泉市| 朝阳区| 凌源市| 新巴尔虎左旗| 崇礼县| 岑巩县| 常熟市| 夏津县| 高平市| 阜康市| 石家庄市| 恩施市| 南部县| 类乌齐县| 托克托县| 龙江县| 长丰县| 新津县| 得荣县| 邛崃市| 如东县| 陈巴尔虎旗| 东安县| 巩义市| 湛江市| 肇东市| 林西县| 吴旗县| 资兴市| 山西省| 莆田市| 玛纳斯县| 南乐县| 西昌市| 靖边县| 永宁县| 肥东县| 古田县|