找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Discovery Enhanced with Semantic and Social Information; Bettina Berendt,Dunja Mladeni?,Filip ?elezny Book 2009 Springer-Verlag

[復(fù)制鏈接]
查看: 19631|回復(fù): 44
樓主
發(fā)表于 2025-3-21 18:48:50 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Knowledge Discovery Enhanced with Semantic and Social Information
編輯Bettina Berendt,Dunja Mladeni?,Filip ?elezny
視頻videohttp://file.papertrans.cn/544/543857/543857.mp4
概述Presents latest results on knowledge discovery enhanced with semantic and social information
叢書名稱Studies in Computational Intelligence
圖書封面Titlebook: Knowledge Discovery Enhanced with Semantic and Social Information;  Bettina Berendt,Dunja Mladeni?,Filip ?elezny Book 2009 Springer-Verlag
描述This book is a showcase of recent advances in knowledge discovery enhanced with semantic and social information. It includes eight contributed chapters that grew out of two joint workshops at ECML/PKDD 2007..There is general agreement that the effectiveness of Machine Learning and Knowledge Discovery output strongly depends not only on the quality of source data and the sophistication of learning algorithms, but also on additional input provided by domain experts. There is less agreement on whether, when and how such input can and should be formalized as explicit prior knowledge..The six chapters in the first part of the book aim to investigate this aspect by addressing four different topics: inductive logic programming; the role of human users; investigations of fully automated methods for integrating background knowledge; the use of background knowledge for Web mining. The two chapters in the second part are motivated by the Web 2.0 (r)evolution and the increasingly strong role of user-generated content. The contributions emphasize the vision of the Web as a social medium for content and knowledge sharing.
出版日期Book 2009
關(guān)鍵詞Web 2; 0; algorithm; algorithms; clustering; knowledge discovery; learning; logic; logic programming; machine
版次1
doihttps://doi.org/10.1007/978-3-642-01891-6
isbn_softcover978-3-642-42609-4
isbn_ebook978-3-642-01891-6Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightSpringer-Verlag Berlin Heidelberg 2009
The information of publication is updating

書目名稱Knowledge Discovery Enhanced with Semantic and Social Information影響因子(影響力)




書目名稱Knowledge Discovery Enhanced with Semantic and Social Information影響因子(影響力)學(xué)科排名




書目名稱Knowledge Discovery Enhanced with Semantic and Social Information網(wǎng)絡(luò)公開度




書目名稱Knowledge Discovery Enhanced with Semantic and Social Information網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Knowledge Discovery Enhanced with Semantic and Social Information被引頻次




書目名稱Knowledge Discovery Enhanced with Semantic and Social Information被引頻次學(xué)科排名




書目名稱Knowledge Discovery Enhanced with Semantic and Social Information年度引用




書目名稱Knowledge Discovery Enhanced with Semantic and Social Information年度引用學(xué)科排名




書目名稱Knowledge Discovery Enhanced with Semantic and Social Information讀者反饋




書目名稱Knowledge Discovery Enhanced with Semantic and Social Information讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:50:52 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:40:49 | 只看該作者
A Study of the SEMINTEC Approach to Frequent Pattern MiningIn this paper, first, we prove that the approach introduced in our previous work for the DLP fragment of description logic family of languages, is also valid for more expressive languages. Next, we present the experimental results under different settings of the approach, and on knowledge bases of different sizes and complexities.
地板
發(fā)表于 2025-3-22 06:14:19 | 只看該作者
The , Project: Web Information Extraction Using Extraction Ontologiestically constructing these from third-party domain ontologies, (2) absorbing the results of inductive learning for subtasks where pre-labelled data abound, and (3) actively exploiting formatting regularities in the wrapper style.
5#
發(fā)表于 2025-3-22 10:54:33 | 只看該作者
Item Weighting Techniques for Collaborative Filteringcomputation the items with the smallest weights.We assume that the items with smallest weights are the least useful for generating the prediction. We have evaluated the proposed methods using two datasets (MovieLens and Yahoo!) and identified the conditions for their best application in CF.
6#
發(fā)表于 2025-3-22 15:20:18 | 只看該作者
7#
發(fā)表于 2025-3-22 18:46:18 | 只看該作者
1860-949X owledge discovery enhanced with semantic and social information. It includes eight contributed chapters that grew out of two joint workshops at ECML/PKDD 2007..There is general agreement that the effectiveness of Machine Learning and Knowledge Discovery output strongly depends not only on the qualit
8#
發(fā)表于 2025-3-22 23:10:26 | 只看該作者
A Knowledge-Intensive Approach for Semi-automatic Causal Subgroup Discovery In a semi-automatic approach, the network and the discovered relations are presented to the user as an intuitive visualization. The applicability and benefit of the presented technique is illustrated by examples from a case-study in the medical domain.
9#
發(fā)表于 2025-3-23 03:00:09 | 只看該作者
10#
發(fā)表于 2025-3-23 07:34:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 21:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
资源县| 曲阜市| 阿图什市| 界首市| 登封市| 盘锦市| 乌鲁木齐市| 大理市| 阜城县| 仲巴县| 阜新| 大埔区| 鄂尔多斯市| 同仁县| 伊吾县| 贵德县| 澄江县| 迁安市| 和静县| 宝鸡市| 章丘市| 锡林浩特市| 甘肃省| 宣汉县| 黎城县| 西林县| 宣城市| 长阳| 鹰潭市| 湟中县| 安远县| 马边| 珲春市| 巴中市| 涿州市| 安陆市| 青河县| 峨边| 徐水县| 浦东新区| 镇安县|