找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowing and the Mystique of Logic and Rules; including True State Peter Naur Book 1995 Springer Science+Business Media B.V. 1995 Bertrand R

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 10:07:29 | 只看該作者
12#
發(fā)表于 2025-3-23 15:57:20 | 只看該作者
The Structure of DNA: Knowing in Biological Discoveryarguments and actions, James Watson’s celebrated account of the discovery, by Francis Crick and himself, of the structure of DNA, the heredity molecule, [Watson, 1968], will here be analyzed for the evidence it gives of how scientific knowing is constituted and grows.
13#
發(fā)表于 2025-3-23 21:11:28 | 只看該作者
Why the Sun Shines: Coherence and Models in Scientific Descriptionhe internal constitution of the stars. The choice of this field as illustration in the present context is justified in three different ways. First by the significance of the matter of concern. In its most primitive formulation this matter is, what is the Sun and why does it shine? Surely a question
14#
發(fā)表于 2025-3-24 00:17:45 | 只看該作者
15#
發(fā)表于 2025-3-24 03:53:18 | 只看該作者
o the increasingly popular topic of field space covariance.I.The ancient Greeks believed that everything in the Universe should be describable in terms of geometry. This thesis takes several steps towards realising this goal by introducing geometric descriptions of systems such as quantum gravity, f
16#
發(fā)表于 2025-3-24 07:15:58 | 只看該作者
Peter Naurry including uniqueness, stability, and existence of elements of best approximation. It presents a number of fundamental results for both these and related problems, many of which appear for the first time in monograph form. The text also discusses the interrelations between main objects of geometri
17#
發(fā)表于 2025-3-24 13:13:17 | 只看該作者
Peter Naurmonograph provides a comprehensive introduction to the classical geometric approximation theory, emphasizing important themes related to the theory including uniqueness, stability, and existence of elements of best approximation. It presents a number of fundamental results for both these and related
18#
發(fā)表于 2025-3-24 15:32:37 | 只看該作者
19#
發(fā)表于 2025-3-24 19:40:24 | 只看該作者
20#
發(fā)表于 2025-3-25 03:01:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 07:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
申扎县| 阳山县| 金阳县| 灵山县| 平度市| 犍为县| 大化| 延川县| 乌拉特前旗| 额济纳旗| 新安县| 沅陵县| 荥经县| 龙里县| 高要市| 舞阳县| 建平县| 普兰县| 柳江县| 金堂县| 阿拉善右旗| 永德县| 遂川县| 灯塔市| 武穴市| 黄山市| 博客| 青田县| 琼结县| 肃南| 萍乡市| 富宁县| 兴隆县| 汝南县| 洱源县| 满城县| 海盐县| 宜丰县| 常山县| 三河市| 桓仁|