找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knotted Fields; Renzo L. Ricca,Xin Liu Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Natu

[復制鏈接]
樓主: 拖累
11#
發(fā)表于 2025-3-23 10:15:29 | 只看該作者
12#
發(fā)表于 2025-3-23 14:22:17 | 只看該作者
A Topological Approach to Vortex Knots and Links,a conserved quantity of ideal fluid mechanics, focusing on the topological interpretation in terms of linking numbers. Then we proceed to consider the derivation from helicity of the Jones and HOMFLYPT knot polynomials, showing that their adapted formulation can be expressed in terms of writhe and t
13#
發(fā)表于 2025-3-23 20:37:55 | 只看該作者
14#
發(fā)表于 2025-3-23 23:40:26 | 只看該作者
Multi-Valued Potentials in Topological Field Theory,ult of Gauss on the interpretation of the magnetic potential in terms of solid angle to show the relevance of these earlier results in modern topological field theory. This is done by considering some particular case studies. First we re-derive the Biot-Savart induction law in terms of solid angle,
15#
發(fā)表于 2025-3-24 03:05:39 | 只看該作者
Excitable and Magnetic Knots,table knots and links is both complex and fascinating, as shown by examples of knot untangling and the collision of knots and links. Even the simple threading of a circular filament by other filaments is shown to produce exotic behaviour. This is illustrated within a chemical excitable medium via nu
16#
發(fā)表于 2025-3-24 06:35:20 | 只看該作者
Designing Knotted Fields in Light and Electromagnetism, topology of complex-valued scalar fields of three dimensional space, and in particular their nodal lines (phase singularities, vortices), the story builds through several different optical settings (random waves, holographically controlled laser light, magnetostatics, time-dependent electromagnetic
17#
發(fā)表于 2025-3-24 10:48:11 | 只看該作者
18#
發(fā)表于 2025-3-24 17:03:36 | 只看該作者
19#
發(fā)表于 2025-3-24 22:02:32 | 只看該作者
20#
發(fā)表于 2025-3-25 00:42:18 | 只看該作者
Renzo L. Ricca,Xin LiuIt provides a comprehensive review of the rapidly expanding field of Knotted Fields.It highlights role and effects of low dimensional topology on the dynamics and energetics of physical knotted fields
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
辽中县| 宁都县| 民乐县| 临漳县| 迭部县| 行唐县| 六枝特区| 沭阳县| 黄冈市| 涟源市| 开鲁县| 巩留县| 琼结县| 巍山| 德格县| 吴江市| 隆昌县| 泾源县| 瑞昌市| 阜康市| 赣榆县| 双桥区| 甘孜| 辽阳市| 沂源县| 香港| 嵊州市| 陵水| 虹口区| 天等县| 安义县| 怀化市| 马龙县| 云阳县| 赫章县| 金沙县| 利川市| 济南市| 宜阳县| 湖口县| 木兰县|