找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Knots, Low-Dimensional Topology and Applications; Knots in Hellas, Int Colin C. Adams,Cameron McA. Gordon,Radmila Sazdano Conference procee

[復(fù)制鏈接]
樓主: FERAL
21#
發(fā)表于 2025-3-25 05:38:19 | 只看該作者
,Knot Theory: From Fox 3-Colorings of Links to Yang–Baxter Homology and Khovanov Homology,logy to Khovanov homology we build homology of distributive structures (including homology of Fox colorings) and generalize it to homology of Yang–Baxter operators. We speculate, with supporting evidence, on co-cycle invariants of knots coming from Yang–Baxter homology. Here the work of Fenn–Rourke–
22#
發(fā)表于 2025-3-25 10:46:44 | 只看該作者
Identity Theorem for Pro-,-groups,ider the problems of pro-.-groups theory through the prism of Tannaka duality, concentrating on the category of representations. In particular we attach special importance to the existence of identities in free pro-.-groups (“conjurings”).
23#
發(fā)表于 2025-3-25 11:42:41 | 只看該作者
24#
發(fā)表于 2025-3-25 18:07:43 | 只看該作者
25#
發(fā)表于 2025-3-25 23:27:03 | 只看該作者
26#
發(fā)表于 2025-3-26 03:40:14 | 只看該作者
27#
發(fā)表于 2025-3-26 04:28:07 | 只看該作者
,From the Framisation of the Temperley–Lieb Algebra to the Jones Polynomial: An Algebraic Approach,ey–Lieb algebras. We use this result to obtain a closed combinatorial formula for the invariants for classical links obtained from a Markov trace on the Framisation of the Temperley–Lieb algebra. For a given link ., this formula involves the Jones polynomials of all sublinks of ., as well as linking numbers.
28#
發(fā)表于 2025-3-26 11:35:39 | 只看該作者
Knot Invariants in Lens Spaces,omial of links in lens spaces, which we represent by mixed link diagrams. These invariants generalize the corresponding knot polynomials in the classical case. We compare the invariants by means of the ability to distinguish between some difficult cases of knots with certain symmetries.
29#
發(fā)表于 2025-3-26 16:15:04 | 只看該作者
30#
發(fā)表于 2025-3-26 20:49:07 | 只看該作者
978-3-030-16033-3Springer Nature Switzerland AG 2019
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
郸城县| 古浪县| 集贤县| 大港区| 香河县| 永吉县| 利川市| 襄垣县| 湘阴县| 广元市| 界首市| 枝江市| 五莲县| 台江县| 安吉县| 静乐县| 宾阳县| 屯门区| 巴彦县| 新郑市| 安仁县| 大冶市| 马山县| 武宣县| 会东县| 海口市| 南平市| 普兰县| 浪卡子县| 资阳市| 兰坪| 准格尔旗| 临澧县| 瑞昌市| 额济纳旗| 东乌珠穆沁旗| 天柱县| 望奎县| 班玛县| 尼玛县| 武隆县|