找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knots and Primes; An Introduction to A Masanori Morishita Textbook 2024Latest edition The Editor(s) (if applicable) and The Author(s), unde

[復(fù)制鏈接]
樓主: melancholy
21#
發(fā)表于 2025-3-25 05:11:24 | 只看該作者
n Niger State of Nigeria to areas slightly beyond Lokoja in the south. It is delimited in the northeast and southwest by the basement complex while it merges with Anambra and Sokoto basins in sedimentary fill comprising post orogenic molasse facies and a few thin unfolded marine sediments (Adeleye,
22#
發(fā)表于 2025-3-25 09:55:05 | 只看該作者
23#
發(fā)表于 2025-3-25 15:26:23 | 只看該作者
24#
發(fā)表于 2025-3-25 18:00:25 | 只看該作者
25#
發(fā)表于 2025-3-25 20:07:44 | 只看該作者
Knots and Primes, 3-Manifolds and Number Rings,In this chapter we explain the basic analogies between knots and primes, 3-manifolds and number rings, which will be fundamental in subsequent chapters.
26#
發(fā)表于 2025-3-26 03:43:48 | 只看該作者
Linking Numbers and Legendre Symbols,In this chapter, we shall discuss the analogy between the linking number and the Legendre symbol, based on the analogies between knots and primes in Chap. ..
27#
發(fā)表于 2025-3-26 06:55:53 | 只看該作者
Decompositions of Knots and Primes,As we have seen in Sect. ., the Legendre symbol describes how a prime number is decomposed in a quadratic extension.
28#
發(fā)表于 2025-3-26 08:56:47 | 只看該作者
29#
發(fā)表于 2025-3-26 16:28:12 | 只看該作者
Link Groups and Galois Groups with Restricted Ramification,As explained in Chap. ., our basic idea is to regard a Galois group with restricted ramification ., ., as an analogue of a link group . (cf. (.)).
30#
發(fā)表于 2025-3-26 18:47:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐都县| 武威市| 隆德县| 乐平市| 务川| 忻州市| 临安市| 宜州市| 顺平县| 苏尼特右旗| 溧水县| 襄樊市| 西林县| 乌兰县| 柞水县| 长沙市| 常宁市| 南昌县| 抚远县| 海安县| 云林县| 庄浪县| 翁源县| 桃源县| 绥棱县| 都兰县| 曲水县| 巴塘县| 德格县| 高淳县| 中阳县| 岳普湖县| 越西县| 阳泉市| 余庆县| 临湘市| 图们市| 江城| 龙海市| 尼木县| 新竹市|