找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knots and Primes; An Introduction to A Masanori Morishita Textbook 2024Latest edition The Editor(s) (if applicable) and The Author(s), unde

[復(fù)制鏈接]
樓主: melancholy
21#
發(fā)表于 2025-3-25 05:11:24 | 只看該作者
n Niger State of Nigeria to areas slightly beyond Lokoja in the south. It is delimited in the northeast and southwest by the basement complex while it merges with Anambra and Sokoto basins in sedimentary fill comprising post orogenic molasse facies and a few thin unfolded marine sediments (Adeleye,
22#
發(fā)表于 2025-3-25 09:55:05 | 只看該作者
23#
發(fā)表于 2025-3-25 15:26:23 | 只看該作者
24#
發(fā)表于 2025-3-25 18:00:25 | 只看該作者
25#
發(fā)表于 2025-3-25 20:07:44 | 只看該作者
Knots and Primes, 3-Manifolds and Number Rings,In this chapter we explain the basic analogies between knots and primes, 3-manifolds and number rings, which will be fundamental in subsequent chapters.
26#
發(fā)表于 2025-3-26 03:43:48 | 只看該作者
Linking Numbers and Legendre Symbols,In this chapter, we shall discuss the analogy between the linking number and the Legendre symbol, based on the analogies between knots and primes in Chap. ..
27#
發(fā)表于 2025-3-26 06:55:53 | 只看該作者
Decompositions of Knots and Primes,As we have seen in Sect. ., the Legendre symbol describes how a prime number is decomposed in a quadratic extension.
28#
發(fā)表于 2025-3-26 08:56:47 | 只看該作者
29#
發(fā)表于 2025-3-26 16:28:12 | 只看該作者
Link Groups and Galois Groups with Restricted Ramification,As explained in Chap. ., our basic idea is to regard a Galois group with restricted ramification ., ., as an analogue of a link group . (cf. (.)).
30#
發(fā)表于 2025-3-26 18:47:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 14:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浮山县| 芮城县| 台北县| 静海县| 常熟市| 武城县| 偏关县| 若羌县| 邹平县| 灵山县| 普安县| 宿松县| 平安县| 辽源市| 隆子县| 章丘市| 石楼县| 平远县| 扶风县| 东港市| 洞口县| 乌鲁木齐县| 余姚市| 永顺县| 广安市| 浦东新区| 祥云县| 色达县| 靖安县| 淮滨县| 舟曲县| 克东县| 新干县| 拉孜县| 宁强县| 遂溪县| 黄冈市| 文昌市| 炎陵县| 武夷山市| 那坡县|