找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knots and Primes; An Introduction to A Masanori Morishita Textbook 20121st edition Springer-Verlag London Limited 2012 3-manifolds.arithmet

[復(fù)制鏈接]
樓主: Prehypertension
21#
發(fā)表于 2025-3-25 04:15:59 | 只看該作者
22#
發(fā)表于 2025-3-25 10:33:49 | 只看該作者
Torsions and the Iwasawa Main Conjecture, analytic zeta function. According to the analogy between the Iwasawa polynomial and the Alexander polynomial in Chap.?., we discuss geometric analogues of the Iwasawa main conjecture, namely, some relations between the Reidemeister–Milnor torsion and the Lefschetz or spectral zeta function.
23#
發(fā)表于 2025-3-25 11:43:39 | 只看該作者
24#
發(fā)表于 2025-3-25 19:25:45 | 只看該作者
25#
發(fā)表于 2025-3-25 21:37:04 | 只看該作者
26#
發(fā)表于 2025-3-26 03:15:24 | 只看該作者
Decompositions of Knots and Primes,In this chapter we review Hilbert theory which deals with, in a group-theoretic manner, the decomposition of a prime in a finite Galois extension of number fields. Based on the analogies in Chap.?., we give a topological analogue of Hilbert theory for a finite Galois covering of 3-manifolds.
27#
發(fā)表于 2025-3-26 07:36:16 | 只看該作者
28#
發(fā)表于 2025-3-26 10:36:43 | 只看該作者
Link Groups and Galois Groups with Restricted Ramification,In this chapter we discuss the analogy between Galois groups with restricted ramification and link groups. In particular, we shall see the close analogy between Milnor’s theorem on the structure of a link group and a theorem by H.?Koch on the structure of a pro-. Galois group over the rational number field with restricted ramification.
29#
發(fā)表于 2025-3-26 14:44:16 | 只看該作者
30#
發(fā)表于 2025-3-26 17:16:19 | 只看該作者
Masanori MorishitaStarts at an elementary level and builds up to a more advanced theoretical discussion.Written by a world expert on arithmetic topology.A large number of illustrative examples are provided throughout?.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 13:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太和县| 东港市| 汝州市| 尼玛县| 海淀区| 桐城市| 桐梓县| 瑞金市| 上栗县| 阳曲县| 海林市| 灵石县| 洛隆县| 十堰市| 大庆市| 大足县| 明水县| 资中县| 溧阳市| 仁寿县| 巴里| 汤阴县| 泌阳县| 长葛市| 湖南省| 英吉沙县| 铁岭县| 满城县| 武山县| 博爱县| 大足县| 永和县| 青岛市| 定结县| 太谷县| 永清县| 永兴县| 台江县| 商南县| 敦煌市| 卫辉市|