找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knots and Primes; An Introduction to A Masanori Morishita Textbook 20121st edition Springer-Verlag London Limited 2012 3-manifolds.arithmet

[復(fù)制鏈接]
樓主: Prehypertension
21#
發(fā)表于 2025-3-25 04:15:59 | 只看該作者
22#
發(fā)表于 2025-3-25 10:33:49 | 只看該作者
Torsions and the Iwasawa Main Conjecture, analytic zeta function. According to the analogy between the Iwasawa polynomial and the Alexander polynomial in Chap.?., we discuss geometric analogues of the Iwasawa main conjecture, namely, some relations between the Reidemeister–Milnor torsion and the Lefschetz or spectral zeta function.
23#
發(fā)表于 2025-3-25 11:43:39 | 只看該作者
24#
發(fā)表于 2025-3-25 19:25:45 | 只看該作者
25#
發(fā)表于 2025-3-25 21:37:04 | 只看該作者
26#
發(fā)表于 2025-3-26 03:15:24 | 只看該作者
Decompositions of Knots and Primes,In this chapter we review Hilbert theory which deals with, in a group-theoretic manner, the decomposition of a prime in a finite Galois extension of number fields. Based on the analogies in Chap.?., we give a topological analogue of Hilbert theory for a finite Galois covering of 3-manifolds.
27#
發(fā)表于 2025-3-26 07:36:16 | 只看該作者
28#
發(fā)表于 2025-3-26 10:36:43 | 只看該作者
Link Groups and Galois Groups with Restricted Ramification,In this chapter we discuss the analogy between Galois groups with restricted ramification and link groups. In particular, we shall see the close analogy between Milnor’s theorem on the structure of a link group and a theorem by H.?Koch on the structure of a pro-. Galois group over the rational number field with restricted ramification.
29#
發(fā)表于 2025-3-26 14:44:16 | 只看該作者
30#
發(fā)表于 2025-3-26 17:16:19 | 只看該作者
Masanori MorishitaStarts at an elementary level and builds up to a more advanced theoretical discussion.Written by a world expert on arithmetic topology.A large number of illustrative examples are provided throughout?.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 13:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南川市| 武夷山市| 青神县| 金沙县| 托里县| 莒南县| 永吉县| 天门市| 沙河市| 刚察县| 楚雄市| 铁岭市| 洛川县| 新巴尔虎右旗| 双牌县| 清河县| 常熟市| 靖远县| 醴陵市| 海兴县| 宜春市| 桃园市| 广元市| 晋中市| 太康县| 陕西省| 大同市| 金沙县| 砚山县| 育儿| 滨海县| 巴东县| 利川市| 长岛县| 开平市| 儋州市| 江津市| 民乐县| 青龙| 湖北省| 墨竹工卡县|