找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knapsack Problems; Hans Kellerer,Ulrich Pferschy,David Pisinger Book 2004 Springer-Verlag Berlin Heidelberg 2004 algorithms.combinatorial

[復(fù)制鏈接]
樓主: 我沒有辱罵
51#
發(fā)表于 2025-3-30 11:54:05 | 只看該作者
Some Selected Applications, problem treated in a chapter. In this section we go into depth with some selected applications of the knapsack problem. Our intention is not to cover all possible kinds of applications but to present some selected examples which illustrate the bandwidth of the fields where knapsack problems appear.
52#
發(fā)表于 2025-3-30 12:33:11 | 只看該作者
Introduction to NP-Completeness of Knapsack Problems,s the problem to optimality. Indeed all the algorithms described are based on some kind of search and prune methods, which in the worst case may take exponential time. It would be a satisfying result if we somehow could prove it is not possible to find an algorithm which runs in polynomial time, som
53#
發(fā)表于 2025-3-30 19:15:00 | 只看該作者
54#
發(fā)表于 2025-3-31 00:18:19 | 只看該作者
55#
發(fā)表于 2025-3-31 02:54:34 | 只看該作者
978-3-642-07311-3Springer-Verlag Berlin Heidelberg 2004
56#
發(fā)表于 2025-3-31 08:39:39 | 只看該作者
57#
發(fā)表于 2025-3-31 12:50:47 | 只看該作者
http://image.papertrans.cn/k/image/543730.jpg
58#
發(fā)表于 2025-3-31 15:20:25 | 只看該作者
https://doi.org/10.1007/978-3-540-24777-7algorithms; combinatorial optimization; computer; computer science; linear optimization; optimization; pro
59#
發(fā)表于 2025-3-31 20:09:58 | 只看該作者
Introduction,he complex professional environment of the 21st century requires a decision process which can be formalized and validated independently from the involved individuals. Therefore, a quantitative formulation of all factors influencing a decision and also of the result of the decision process is sought.
60#
發(fā)表于 2025-3-31 22:48:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 08:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
四川省| 容城县| 安新县| 五峰| 镇平县| 昌黎县| 九龙县| 九龙城区| 合川市| 驻马店市| 兴安盟| 金沙县| 四子王旗| 巩留县| 肇庆市| 和龙市| 巴林右旗| 呈贡县| 高邑县| 永清县| 武川县| 页游| 迁西县| 延长县| 乐昌市| 蕲春县| 新巴尔虎右旗| 泰安市| 阿拉善右旗| 青岛市| 海阳市| 肃北| 巴里| 安图县| 上蔡县| 宁晋县| 东丽区| 津市市| 车致| 新和县| 曲靖市|