找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knapsack Problems; Hans Kellerer,Ulrich Pferschy,David Pisinger Book 2004 Springer-Verlag Berlin Heidelberg 2004 algorithms.combinatorial

[復制鏈接]
樓主: 我沒有辱罵
51#
發(fā)表于 2025-3-30 11:54:05 | 只看該作者
Some Selected Applications, problem treated in a chapter. In this section we go into depth with some selected applications of the knapsack problem. Our intention is not to cover all possible kinds of applications but to present some selected examples which illustrate the bandwidth of the fields where knapsack problems appear.
52#
發(fā)表于 2025-3-30 12:33:11 | 只看該作者
Introduction to NP-Completeness of Knapsack Problems,s the problem to optimality. Indeed all the algorithms described are based on some kind of search and prune methods, which in the worst case may take exponential time. It would be a satisfying result if we somehow could prove it is not possible to find an algorithm which runs in polynomial time, som
53#
發(fā)表于 2025-3-30 19:15:00 | 只看該作者
54#
發(fā)表于 2025-3-31 00:18:19 | 只看該作者
55#
發(fā)表于 2025-3-31 02:54:34 | 只看該作者
978-3-642-07311-3Springer-Verlag Berlin Heidelberg 2004
56#
發(fā)表于 2025-3-31 08:39:39 | 只看該作者
57#
發(fā)表于 2025-3-31 12:50:47 | 只看該作者
http://image.papertrans.cn/k/image/543730.jpg
58#
發(fā)表于 2025-3-31 15:20:25 | 只看該作者
https://doi.org/10.1007/978-3-540-24777-7algorithms; combinatorial optimization; computer; computer science; linear optimization; optimization; pro
59#
發(fā)表于 2025-3-31 20:09:58 | 只看該作者
Introduction,he complex professional environment of the 21st century requires a decision process which can be formalized and validated independently from the involved individuals. Therefore, a quantitative formulation of all factors influencing a decision and also of the result of the decision process is sought.
60#
發(fā)表于 2025-3-31 22:48:29 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 03:28
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
武功县| 凭祥市| 德江县| 英山县| 麻栗坡县| 延吉市| 和平县| 天水市| 印江| 阿拉善左旗| 高淳县| 分宜县| 古田县| 南宫市| 桂东县| 奉新县| 磐石市| 西和县| 淄博市| 镇安县| 龙海市| 沙雅县| 临泉县| 玉溪市| 南和县| 进贤县| 通许县| 同心县| 廊坊市| 阳谷县| 柳州市| 利川市| 榕江县| 乐业县| 荣成市| 昌邑市| 苍山县| 西乌珠穆沁旗| 青州市| 沭阳县| 宽甸|