找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Kleinian Groups; Bernard Maskit Book 1988 Springer-Verlag Berlin Heidelberg 1988 Area.Dimension.Finite.Group theory.Invariant.Riemann surf

[復(fù)制鏈接]
樓主: mortality
21#
發(fā)表于 2025-3-25 05:39:37 | 只看該作者
22#
發(fā)表于 2025-3-25 11:07:20 | 只看該作者
23#
發(fā)表于 2025-3-25 15:39:17 | 只看該作者
Combination Theorems,s (these are sometimes known as the Klein-Maskit combination theorems) are given in sections C and E. We state and prove these theorems only for discrete subgroups of .. The minor modifications required for the case that . contains orientation reversing elements are left to the reader.
24#
發(fā)表于 2025-3-25 17:10:02 | 只看該作者
25#
發(fā)表于 2025-3-25 21:52:25 | 只看該作者
26#
發(fā)表于 2025-3-26 00:50:19 | 只看該作者
27#
發(fā)表于 2025-3-26 05:43:25 | 只看該作者
Function Groups,opologically realized by a regular function group. Using similar techniques with quasiconformal mappings, one can prove that every planar regular covering of a finite Riemann surface can be conformally realized by a regular function group; this theorem however is beyond the scope of this book.
28#
發(fā)表于 2025-3-26 11:06:16 | 只看該作者
0072-7830 d Bers‘ observation that their joint work on the Beltrami equation has deep implications for the theory of Kleinian groups and their deformations. From the point of view of uniformizations of Riemann surfaces, Bers‘ observation has the consequence that the question of understanding the different uni
29#
發(fā)表于 2025-3-26 13:50:04 | 只看該作者
0072-7830 finite Riemann surfaces, or, as we do here, one can start with the assumption that, in the invariant component, the group represents a finite Riemann surface, a978-3-642-64878-6978-3-642-61590-0Series ISSN 0072-7830 Series E-ISSN 2196-9701
30#
發(fā)表于 2025-3-26 20:44:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新龙县| 富宁县| 尼勒克县| 荆州市| 固镇县| 平罗县| 无锡市| 乌鲁木齐县| 河南省| 东丰县| 南召县| 兴化市| 巴林右旗| 南宫市| 巴南区| 莱芜市| 兴隆县| 西充县| 乳山市| 应城市| 木兰县| 晋宁县| 南京市| 德格县| 两当县| 赣榆县| 衡阳县| 六盘水市| 肇庆市| 石阡县| 阿鲁科尔沁旗| 嘉荫县| 泽州县| 沂源县| 县级市| 文安县| 安图县| 兴化市| 黄浦区| 巨野县| 泌阳县|