找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Kleinian Groups; Bernard Maskit Book 1988 Springer-Verlag Berlin Heidelberg 1988 Area.Dimension.Finite.Group theory.Invariant.Riemann surf

[復制鏈接]
樓主: mortality
11#
發(fā)表于 2025-3-23 11:05:19 | 只看該作者
12#
發(fā)表于 2025-3-23 17:35:16 | 只看該作者
on the intimacies and intricacies of relations within the domestic sphere. Respondent narratives highlight the intercon-nectedness of the self with ‘other’ as well as with wider socio-cultural and structural norms and values. When articulating one’s identity it is difficult to avoid ‘common vocabul
13#
發(fā)表于 2025-3-23 22:03:58 | 只看該作者
Discontinuous Groups in the Plane,formations acting on the extended complex plane. We discuss some inequalities, including J?rgensen’s inequality, the limit set, and fundamental domains, in particular, the Ford region. The point of view here is primarily one complex dimensional; real higher dimensional discontinuous groups will be discussed in Chapter IV.
14#
發(fā)表于 2025-3-23 23:08:54 | 只看該作者
15#
發(fā)表于 2025-3-24 02:47:23 | 只看該作者
Geometrically Finite Groups,nitely many sides. One of our main objectives is to give a criterion for a group to be geometrically finite in terms of its action at the limit set; this criterion will then be used in Chapter VII to show that, under suitable conditions, the combination of two geometrically finite groups is again geometrically finite.
16#
發(fā)表于 2025-3-24 06:46:51 | 只看該作者
Fractional Linear Transformations,In this chapter we review the basic properties of fractional linear transformations. For the convenience of the reader, we start from scratch and derive the properties we need. The point of view here is strictly one complex dimensional; isometries of hyperbolic spaces will be developed in Chapter IV.
17#
發(fā)表于 2025-3-24 11:47:29 | 只看該作者
Covering Spaces,This chapter is primarily a review of standard covering space theory, including some easy, but not so will known facts about regular coverings. There is also a discussion of branched regular coverings, in dimension two, and a proof of the branched universal covering surface theorem.
18#
發(fā)表于 2025-3-24 15:18:07 | 只看該作者
The Geometric Basic Groups,The geometric basic groups are those Kleinian groups which are also discrete groups of isometries in one of the 2-dimensional geometries discussed in the last chapter. That is, a geometric basic group is a (conjugate of a) discrete group of isometries of ., ., or ?.
19#
發(fā)表于 2025-3-24 20:05:41 | 只看該作者
20#
發(fā)表于 2025-3-25 02:26:44 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 18:04
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
新昌县| 黔江区| 历史| 揭东县| 香港 | 金乡县| 定兴县| 海伦市| 牙克石市| 金平| 桂阳县| 乐安县| 班玛县| 瑞昌市| 施甸县| 惠安县| 禄丰县| 木兰县| 怀集县| 东城区| 连云港市| 松潘县| 罗山县| 顺平县| 香港| 鹤峰县| 抚远县| 肇源县| 阳城县| 锦屏县| 喀喇沁旗| 社旗县| 镇雄县| 长顺县| 吉木乃县| 朝阳县| 喀喇| 社会| 腾冲县| 夹江县| 赤水市|