找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Kidney and Kidney Tumor Segmentation; MICCAI 2023 Challeng Nicholas Heller,Andrew Wood,Christopher Weight Conference proceedings 2024 The E

[復(fù)制鏈接]
查看: 39859|回復(fù): 58
樓主
發(fā)表于 2025-3-21 17:38:53 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Kidney and Kidney Tumor Segmentation
副標(biāo)題MICCAI 2023 Challeng
編輯Nicholas Heller,Andrew Wood,Christopher Weight
視頻videohttp://file.papertrans.cn/543/542691/542691.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Kidney and Kidney Tumor Segmentation; MICCAI 2023 Challeng Nicholas Heller,Andrew Wood,Christopher Weight Conference proceedings 2024 The E
描述.This book constitutes the Third International Challenge on Kidney and Kidney Tumor Segmentation, KiTS 2023, which was held in conjunction with the 26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023. The challenge took place in Vancouver, BC, Canada, on October 8, 2023..The 22 contributions presented in this book were carefully reviewed and selected from 29 submissions. ..This challenge aims to develop the best system for automatic semantic segmentation of kidneys, renal tumors and renal cysts..
出版日期Conference proceedings 2024
關(guān)鍵詞Computer Science; Informatics; Conference Proceedings; Research; Applications; Computer Vision; Machine Le
版次1
doihttps://doi.org/10.1007/978-3-031-54806-2
isbn_softcover978-3-031-54805-5
isbn_ebook978-3-031-54806-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Kidney and Kidney Tumor Segmentation影響因子(影響力)




書目名稱Kidney and Kidney Tumor Segmentation影響因子(影響力)學(xué)科排名




書目名稱Kidney and Kidney Tumor Segmentation網(wǎng)絡(luò)公開度




書目名稱Kidney and Kidney Tumor Segmentation網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Kidney and Kidney Tumor Segmentation被引頻次




書目名稱Kidney and Kidney Tumor Segmentation被引頻次學(xué)科排名




書目名稱Kidney and Kidney Tumor Segmentation年度引用




書目名稱Kidney and Kidney Tumor Segmentation年度引用學(xué)科排名




書目名稱Kidney and Kidney Tumor Segmentation讀者反饋




書目名稱Kidney and Kidney Tumor Segmentation讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:03:26 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:15:54 | 只看該作者
,Dynamic Resolution Network for?Kidney Tumor Segmentation,nd radiological analysis. However, the task is challenging due to the considerable variation in tumor scales between different cases, which is not effectively addressed by conventional segmentation methods. In this paper, we propose a method called dynamic resolution that addresses this issue by dyn
地板
發(fā)表于 2025-3-22 04:47:00 | 只看該作者
,Analyzing Domain Shift When Using Additional Data for?the?MICCAI KiTS23 Challenge,l and the model needs to generalize well from few available data. Unlike transfer learning in which a model pretrained on huge datasets is fine-tuned for a specific task using limited data, we research the case in which we acquire supplementary training material and combine it with the original trai
5#
發(fā)表于 2025-3-22 09:49:54 | 只看該作者
,A Hybrid Network Based on?nnU-Net and?Swin Transformer for?Kidney Tumor Segmentation,tment of kidney cancer. Deep learning-based automatic medical image segmentation can help to confirm the diagnosis. The traditional 3D nnU-net based on convolutional layers is widely used in medical image segmentation. However, the fixed receptive field of convolutional neural networks introduces an
6#
發(fā)表于 2025-3-22 14:26:30 | 只看該作者
7#
發(fā)表于 2025-3-22 19:55:33 | 只看該作者
8#
發(fā)表于 2025-3-23 00:34:03 | 只看該作者
9#
發(fā)表于 2025-3-23 03:30:29 | 只看該作者
,Two-Stage Segmentation and?Ensemble Modeling: Kidney Tumor Analysis in?CT Images,latform, our research introduces a two-stage strategy combining the strengths of nnU-Net and nnFormer for enhanced tumor segmentation. Our approach focuses on the kidney region, facilitating the learning of tumor-influenced areas, and employs an ensemble of two nnU-Net models for precise segmentatio
10#
發(fā)表于 2025-3-23 05:53:29 | 只看該作者
,GSCA-Net: A Global Spatial Channel Attention Network for?Kidney, Tumor and?Cyst Segmentation,chitecture as the pre-processing method to extract the region of interest (ROI) and segment the kidney. Then, we propose Global Spatial Channel Attention Network (GSCA-Net) with global spatial attention (GSA) and global channel attention (GCA) for the segmentation of tumors and cysts. Global spatial
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平陆县| 盐池县| 常山县| 和静县| 收藏| 芦溪县| 平昌县| 阆中市| 仁怀市| 岳池县| 廉江市| 诏安县| 张家川| 玉门市| 达日县| 合阳县| 石棉县| 辽源市| 潼关县| 长海县| 思南县| 探索| 宜州市| 密山市| 察雅县| 泰宁县| 襄垣县| 阜阳市| 三原县| 西贡区| 平顺县| 连城县| 济宁市| 灵石县| 蒲江县| 思茅市| 同江市| 东莞市| 寿阳县| 桦南县| 夏邑县|