找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Kernel Ridge Regression in Clinical Research; Ton J. Cleophas,Aeilko H. Zwinderman Textbook 2022 The Editor(s) (if applicable) and The Aut

[復(fù)制鏈接]
查看: 19574|回復(fù): 63
樓主
發(fā)表于 2025-3-21 17:45:21 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Kernel Ridge Regression in Clinical Research
編輯Ton J. Cleophas,Aeilko H. Zwinderman
視頻videohttp://file.papertrans.cn/543/542453/542453.mp4
概述A virtually unpublished statistical analysis method‘for pattern recognition in high dimensional data.A complete comparison against traditional methods shows that the latter is uniformly outperformed b
圖書封面Titlebook: Kernel Ridge Regression in Clinical Research;  Ton J. Cleophas,Aeilko H. Zwinderman Textbook 2022 The Editor(s) (if applicable) and The Aut
描述.IBM (international business machines) has published in its SPSS statistical software 2022 update a very important novel regression method entitled Kernel Ridge Regression (KRR). It is an extension of the currently available regression methods, and is suitable for pattern recognition in high dimensional data, particularly, when alternative methods fail. Its theoretical advantages are plenty and include the.kernel trick for reduced arithmetic complexity,.estimation of uncertainty by Gaussians unlike histograms,.corrected data-overfit by ridge regularization,.availability of 8 alternative kernel density models for datafit..A very exciting and wide array of preliminary KRR research has already been published by major disciplines (like studies in quantum mechanics and nuclear physics, studies of molecular affinity / dynamics, atomisation energy studies, but also forecasting economics studies, IoT (internet of things)studies for e-networks, plant stress response studies, big data streaming studies, etc). In contrast, it is virtually unused in clinical research. This edition is the first textbook and tutorial of kernel ridge regressions for medical and healthcare students as well as reco
出版日期Textbook 2022
關(guān)鍵詞Kernel Ridge Regression; Statistical Data Analysis; Clinical Medicine; Step by Step Analyses for Self-a
版次1
doihttps://doi.org/10.1007/978-3-031-10717-7
isbn_softcover978-3-031-10719-1
isbn_ebook978-3-031-10717-7
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Kernel Ridge Regression in Clinical Research影響因子(影響力)




書目名稱Kernel Ridge Regression in Clinical Research影響因子(影響力)學(xué)科排名




書目名稱Kernel Ridge Regression in Clinical Research網(wǎng)絡(luò)公開度




書目名稱Kernel Ridge Regression in Clinical Research網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Kernel Ridge Regression in Clinical Research被引頻次




書目名稱Kernel Ridge Regression in Clinical Research被引頻次學(xué)科排名




書目名稱Kernel Ridge Regression in Clinical Research年度引用




書目名稱Kernel Ridge Regression in Clinical Research年度引用學(xué)科排名




書目名稱Kernel Ridge Regression in Clinical Research讀者反饋




書目名稱Kernel Ridge Regression in Clinical Research讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:49:56 | 只看該作者
Kernel Ridge Regression (KRR),es are converted into discrete ones, otherwise discretized ones..Another problem is that of increasing mathematical complexity with multidimensional data. However, the . is an efficient and less computationally-intensive way to transform data into high dimensions. A third problem, is that of data ov
板凳
發(fā)表于 2025-3-22 02:13:40 | 只看該作者
Optimal Scaling vs Kernel Ridge Regression,ns, and performs even better than optimal scaling for the purpose of optimized predictive modeling..The traditional R Square values of the scale 1–3 models were respectively.The kernel ridge R Square values of the scale 1–3 models were respectively
地板
發(fā)表于 2025-3-22 05:31:49 | 只看該作者
5#
發(fā)表于 2025-3-22 09:16:53 | 只看該作者
Effect on Being Blind of Age/Sex Adjusted Mortality of Onchocerciasis Patients in 12,816 Personyeare is 0,994, which means 94,4% certainty about the prediction of the outcome by the above three predictors. The presence of multicollinearity in the data was suspected, and confirmed as assessed with one-by-one linear regressions. Kernel ridge regression is a technique for analyzing multiple regressi
6#
發(fā)表于 2025-3-22 13:25:34 | 只看該作者
Effect of Old Treatment on New Treatment, 35 Patients, Traditional Regressions vs Kernel Ridge Regrts was used as data example for testing the effects of simple linear regression, and quantile regression against kernel ridge regression. With traditional linear regression the old treatment was not a strong predictor of the new treatment with an overall R Square value of 0,219 (21,9% certainty abou
7#
發(fā)表于 2025-3-22 19:13:39 | 只看該作者
Effect of Gene Expressions on Drug Efficacy, 250 Patients, Traditional Regressions vs Kernel Ridge bles regression showed that 6 genes were very significant independent predictors of drug efficacy scores. Kernel ridge regressions provided quite better datafit particularly.Much better statistics can thus be obtained with the help of kernel ridge regressions using one of the eight kernel density mo
8#
發(fā)表于 2025-3-22 23:16:58 | 只看該作者
9#
發(fā)表于 2025-3-23 03:15:00 | 只看該作者
10#
發(fā)表于 2025-3-23 08:38:48 | 只看該作者
,Effect of Month on Mean C-Reactive Protein, 18?Months, Traditional Regressions vs Kernel Ridge Regrf paired differences between the first and subsequent monthly measures..The significant positive autocorrelations at the month no.13 (correlation coefficients of 0,42 (SE 0,14, t-value 3,0, p?
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 14:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
荃湾区| 萍乡市| 方山县| 大关县| 滨州市| 饶平县| 宁晋县| 桓台县| 阜宁县| 临江市| 万山特区| 高平市| 青岛市| 九江市| 潼关县| 蕲春县| 东阳市| 从江县| 宜兰县| 娱乐| 左云县| 师宗县| 威信县| 博白县| 孟津县| 河间市| 鹤岗市| 卢湾区| 渭南市| 启东市| 谢通门县| 惠东县| 包头市| 璧山县| 镶黄旗| 奉新县| 三江| 临邑县| 惠州市| 青龙| 侯马市|