找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Kernel Mode Decomposition and the Programming of Kernels; Houman Owhadi,Clint Scovel,Gene Ryan Yoo Book 2021 The Editor(s) (if applicable)

[復(fù)制鏈接]
查看: 46753|回復(fù): 42
樓主
發(fā)表于 2025-3-21 19:31:41 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Kernel Mode Decomposition and the Programming of Kernels
編輯Houman Owhadi,Clint Scovel,Gene Ryan Yoo
視頻videohttp://file.papertrans.cn/543/542452/542452.mp4
概述Introduces programmable and interpretable regression networks for pattern recognition.Uses the classical mode decomposition problem to precisely illustrate models.Demonstrates a program for representi
叢書名稱Surveys and Tutorials in the Applied Mathematical Sciences
圖書封面Titlebook: Kernel Mode Decomposition and the Programming of Kernels;  Houman Owhadi,Clint Scovel,Gene Ryan Yoo Book 2021 The Editor(s) (if applicable)
描述.This monograph demonstrates a new approach to the classical mode decomposition problem through nonlinear regression models, which achieve near-machine precision in the recovery of the modes. The presentation includes a review of generalized additive models, additive kernels/Gaussian processes,? generalized Tikhonov regularization, empirical mode decomposition, and Synchrosqueezing, which are all related to and generalizable under the proposed framework..Although kernel methods have strong theoretical foundations, they require the prior selection of a good kernel. While the usual approach to this kernel selection problem is hyperparameter tuning, the objective of this monograph is to present an alternative (programming) approach to the kernel selection problem while using mode decomposition as a prototypical pattern recognition problem. In this approach, kernels are programmed for the task at hand through the programming of interpretable regression networks in the contextof additive Gaussian processes..It is suitable for engineers, computer scientists, mathematicians, and students in these fields working on kernel methods, pattern recognition, and mode decomposition problems..
出版日期Book 2021
關(guān)鍵詞Kernel methods; empirical mode decomposition; Gaussian process regression; additive models; time-frequen
版次1
doihttps://doi.org/10.1007/978-3-030-82171-5
isbn_softcover978-3-030-82170-8
isbn_ebook978-3-030-82171-5Series ISSN 2199-4765 Series E-ISSN 2199-4773
issn_series 2199-4765
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Kernel Mode Decomposition and the Programming of Kernels影響因子(影響力)




書目名稱Kernel Mode Decomposition and the Programming of Kernels影響因子(影響力)學(xué)科排名




書目名稱Kernel Mode Decomposition and the Programming of Kernels網(wǎng)絡(luò)公開度




書目名稱Kernel Mode Decomposition and the Programming of Kernels網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Kernel Mode Decomposition and the Programming of Kernels被引頻次




書目名稱Kernel Mode Decomposition and the Programming of Kernels被引頻次學(xué)科排名




書目名稱Kernel Mode Decomposition and the Programming of Kernels年度引用




書目名稱Kernel Mode Decomposition and the Programming of Kernels年度引用學(xué)科排名




書目名稱Kernel Mode Decomposition and the Programming of Kernels讀者反饋




書目名稱Kernel Mode Decomposition and the Programming of Kernels讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:14:12 | 只看該作者
2199-4765 sely illustrate models.Demonstrates a program for representi.This monograph demonstrates a new approach to the classical mode decomposition problem through nonlinear regression models, which achieve near-machine precision in the recovery of the modes. The presentation includes a review of generalize
板凳
發(fā)表于 2025-3-22 04:09:25 | 只看該作者
Additional Programming Modules and Squeezing,ions using linear techniques, but can also be thought of as a sparsification technique whose goal is to reduce the computational complexity of solving the corresponding GPR problem, much like the sparse methods have been invented for GPR discussed in Sect. ..
地板
發(fā)表于 2025-3-22 05:27:49 | 只看該作者
5#
發(fā)表于 2025-3-22 11:37:09 | 只看該作者
Book 2021sk at hand through the programming of interpretable regression networks in the contextof additive Gaussian processes..It is suitable for engineers, computer scientists, mathematicians, and students in these fields working on kernel methods, pattern recognition, and mode decomposition problems..
6#
發(fā)表于 2025-3-22 13:54:33 | 只看該作者
Houman Owhadi,Clint Scovel,Gene Ryan Yooassification, Support Vector Machines, Neural Networks, and Decision Trees; discusses techniques for indexing, image ranking, and image presentation, along with image database visualization methods; provides se978-3-030-17991-5978-3-030-17989-2Series ISSN 1868-0941 Series E-ISSN 1868-095X
7#
發(fā)表于 2025-3-22 18:30:46 | 只看該作者
8#
發(fā)表于 2025-3-22 22:02:31 | 只看該作者
9#
發(fā)表于 2025-3-23 04:45:49 | 只看該作者
10#
發(fā)表于 2025-3-23 06:04:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
聂拉木县| 和平区| 沂源县| 子洲县| 化州市| 磐石市| 杨浦区| 和平县| 江油市| 饶河县| 上蔡县| 顺平县| 铜山县| 娱乐| 岳阳县| 梓潼县| 连州市| 稻城县| 花莲市| 汉川市| 岐山县| 靖宇县| 兴文县| 汽车| 三穗县| 桑日县| 庆云县| 隆化县| 宁南县| 拉孜县| 丹棱县| 衡南县| 眉山市| 沁水县| 南雄市| 楚雄市| 宁国市| 苍梧县| 潜江市| 孟津县| 水富县|