找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Kernel Methods for Machine Learning with Math and R; 100 Exercises for Bu Joe Suzuki Textbook 2022 The Editor(s) (if applicable) and The Au

[復(fù)制鏈接]
查看: 24612|回復(fù): 37
樓主
發(fā)表于 2025-3-21 18:32:06 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Kernel Methods for Machine Learning with Math and R
副標(biāo)題100 Exercises for Bu
編輯Joe Suzuki
視頻videohttp://file.papertrans.cn/543/542451/542451.mp4
概述Equips readers with the logic required for machine learning and data science.Provides in-depth understanding of source programs.Written in an easy-to-follow and self-contained style
圖書封面Titlebook: Kernel Methods for Machine Learning with Math and R; 100 Exercises for Bu Joe Suzuki Textbook 2022 The Editor(s) (if applicable) and The Au
描述.The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than relying on knowledge or experience. This textbook addresses the fundamentals of kernel methods for machine learning by considering relevant math problems and building R programs.?..The book’s main features are as follows:.The content is written in an easy-to-follow and self-contained style..The book includes 100 exercises, which have been carefully selected and refined. As their solutions are provided in the main text, readers can solve all of the exercises by reading the book..The mathematical premises of kernels are proven and the correct conclusions are provided, helping readers to understand the nature of kernels..Source programs and running examples are presented to help readers acquire a deeper understanding of the mathematics used..Once readers have a basic understanding of the functional analysis topics covered in Chapter 2, the applications are discussed in the subsequent chapters. Here, no prior knowledge of mathematics is assumed..This book considers both the kernel for reproducing kernel Hilbert space (RKHS) and the kernel for the Gaussian process
出版日期Textbook 2022
關(guān)鍵詞Machine Learning; Statistical Learning; Data Science; Kernel; Bayesian Statitics; Hilbert space; reproduci
版次1
doihttps://doi.org/10.1007/978-981-19-0398-4
isbn_softcover978-981-19-0397-7
isbn_ebook978-981-19-0398-4
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Kernel Methods for Machine Learning with Math and R影響因子(影響力)




書目名稱Kernel Methods for Machine Learning with Math and R影響因子(影響力)學(xué)科排名




書目名稱Kernel Methods for Machine Learning with Math and R網(wǎng)絡(luò)公開度




書目名稱Kernel Methods for Machine Learning with Math and R網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Kernel Methods for Machine Learning with Math and R被引頻次




書目名稱Kernel Methods for Machine Learning with Math and R被引頻次學(xué)科排名




書目名稱Kernel Methods for Machine Learning with Math and R年度引用




書目名稱Kernel Methods for Machine Learning with Math and R年度引用學(xué)科排名




書目名稱Kernel Methods for Machine Learning with Math and R讀者反饋




書目名稱Kernel Methods for Machine Learning with Math and R讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:24:51 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:19:03 | 只看該作者
地板
發(fā)表于 2025-3-22 07:07:04 | 只看該作者
5#
發(fā)表于 2025-3-22 11:59:54 | 只看該作者
6#
發(fā)表于 2025-3-22 14:24:59 | 只看該作者
The MMD and HSIC,In this chapter, we introduce the concept of random variables . in an RKHS and discuss testing problems in RKHSs. In particular, we define a statistic and its null hypothesis for the two-sample problem and the corresponding independence test.
7#
發(fā)表于 2025-3-22 17:23:50 | 只看該作者
8#
發(fā)表于 2025-3-22 21:54:37 | 只看該作者
978-981-19-0397-7The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
9#
發(fā)表于 2025-3-23 05:01:57 | 只看該作者
Positive Definite Kernels, with mathematically defined kernels called positive definite kernels. Let the elements .,?. of a set . correspond to the elements (functions) . of a linear space . called the reproducing kernel Hilbert space.
10#
發(fā)表于 2025-3-23 06:47:05 | 只看該作者
e can be mined or extracted for image representation.Applies powerful classification approaches: Bayesian classification, support vector machines, neural networks, and decision trees.Implements imaging techniqu978-3-030-69253-7978-3-030-69251-3Series ISSN 1868-0941 Series E-ISSN 1868-095X
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
五华县| 西乌珠穆沁旗| 墨玉县| 隆回县| 湘乡市| 明星| 天祝| 盘山县| 墨脱县| 夹江县| 额尔古纳市| 汶川县| 贞丰县| 张家界市| 岱山县| 万山特区| 玉树县| 怀宁县| 沾益县| 兴海县| 通河县| 兴隆县| 龙井市| 新干县| 丘北县| 任丘市| 庄浪县| 阿勒泰市| 永吉县| 新邵县| 宾阳县| 冷水江市| 寿宁县| 沛县| 台江县| 友谊县| 南汇区| 林周县| 大名县| 正镶白旗| 新乡市|