找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Kernel Based Algorithms for Mining Huge Data Sets; Supervised, Semi-sup Te-Ming Huang,Vojislav Kecman,Ivica Kopriva Book 2006 Springer-Verl

[復制鏈接]
查看: 12150|回復: 35
樓主
發(fā)表于 2025-3-21 18:18:24 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Kernel Based Algorithms for Mining Huge Data Sets
副標題Supervised, Semi-sup
編輯Te-Ming Huang,Vojislav Kecman,Ivica Kopriva
視頻videohttp://file.papertrans.cn/543/542447/542447.mp4
概述Reports recent research results on Kernel Based Algorithms for Mining Huge Data Sets.A book about (machine) learning from (experimental) data.Includes supplementary material:
叢書名稱Studies in Computational Intelligence
圖書封面Titlebook: Kernel Based Algorithms for Mining Huge Data Sets; Supervised, Semi-sup Te-Ming Huang,Vojislav Kecman,Ivica Kopriva Book 2006 Springer-Verl
描述."Kernel Based Algorithms for Mining Huge Data Sets" is the first book treating the fields of supervised, semi-supervised and unsupervised machine learning collectively. The book presents both the theory and the algorithms for mining huge data sets by using support vector machines (SVMs) in an iterative way. It demonstrates how kernel based SVMs can be used for dimensionality reduction (feature elimination) and shows the similarities and differences between the two most popular unsupervised techniques, the principal component analysis (PCA) and the independent component analysis (ICA). The book presents various examples, software, algorithmic solutions enabling the reader to develop their own codes for solving the problems. The book is accompanied by a website for downloading both data and software for huge data sets modeling in a supervised and semisupervised manner, as well as MATLAB based PCA and ICA routines for unsupervised learning. The book focuses on a broad range of machine learning algorithms and it is particularly aimed at students, scientists, and practicing researchers in bioinformatics (gene microarrays), text-categorization, numerals recognition, as well as in the im
出版日期Book 2006
關鍵詞Analysis; MATLAB; Regression; Signal; algorithm; algorithms; bioinformatics; classification; learning; machin
版次1
doihttps://doi.org/10.1007/3-540-31689-2
isbn_softcover978-3-642-06856-0
isbn_ebook978-3-540-31689-3Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightSpringer-Verlag Berlin Heidelberg 2006
The information of publication is updating

書目名稱Kernel Based Algorithms for Mining Huge Data Sets影響因子(影響力)




書目名稱Kernel Based Algorithms for Mining Huge Data Sets影響因子(影響力)學科排名




書目名稱Kernel Based Algorithms for Mining Huge Data Sets網(wǎng)絡公開度




書目名稱Kernel Based Algorithms for Mining Huge Data Sets網(wǎng)絡公開度學科排名




書目名稱Kernel Based Algorithms for Mining Huge Data Sets被引頻次




書目名稱Kernel Based Algorithms for Mining Huge Data Sets被引頻次學科排名




書目名稱Kernel Based Algorithms for Mining Huge Data Sets年度引用




書目名稱Kernel Based Algorithms for Mining Huge Data Sets年度引用學科排名




書目名稱Kernel Based Algorithms for Mining Huge Data Sets讀者反饋




書目名稱Kernel Based Algorithms for Mining Huge Data Sets讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:33:43 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:59:41 | 只看該作者
,Support Vector Machines in Classification and Regression — An Introduction,
地板
發(fā)表于 2025-3-22 07:25:23 | 只看該作者
Iterative Single Data Algorithm for Kernel Machines from Huge Data Sets: Theory and Performance,
5#
發(fā)表于 2025-3-22 09:16:11 | 只看該作者
6#
發(fā)表于 2025-3-22 15:05:30 | 只看該作者
Unsupervised Learning by Principal and Independent Component Analysis,
7#
發(fā)表于 2025-3-22 20:41:13 | 只看該作者
Book 2006rning collectively. The book presents both the theory and the algorithms for mining huge data sets by using support vector machines (SVMs) in an iterative way. It demonstrates how kernel based SVMs can be used for dimensionality reduction (feature elimination) and shows the similarities and differen
8#
發(fā)表于 2025-3-22 23:51:35 | 只看該作者
9#
發(fā)表于 2025-3-23 04:14:30 | 只看該作者
Te-Ming Huang,Vojislav Kecman,Ivica KoprivaReports recent research results on Kernel Based Algorithms for Mining Huge Data Sets.A book about (machine) learning from (experimental) data.Includes supplementary material:
10#
發(fā)表于 2025-3-23 09:27:51 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 18:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
苗栗市| 军事| 托里县| 呼伦贝尔市| 景东| 车致| 万载县| 牟定县| 铁岭市| 梓潼县| 大化| 宁武县| 桑植县| 安塞县| 柞水县| 邯郸县| 新巴尔虎左旗| 崇左市| 花垣县| 公安县| 乐平市| 兰溪市| 丰原市| 平果县| 永吉县| 淅川县| 集贤县| 安塞县| 柯坪县| 常德市| 多伦县| 张家界市| 邻水| 宁武县| 鄂伦春自治旗| 大渡口区| 特克斯县| 内丘县| 南和县| 陇西县| 合水县|