找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Kepler Problem in the Presence of Dark Energy, and the Cosmic Local Flow; Alexander Silbergleit,Arthur Chernin Book 2019 The Author(s), un

[復(fù)制鏈接]
樓主: osteomalacia
11#
發(fā)表于 2025-3-23 09:55:38 | 只看該作者
Orbital (Planar) Motions: Exact Solution and Its Analysis,lem, infinite motions grossly dominate the finite ones. We present and discuss all elementary function solutions existing for special values of . and ., such as circular and spiral orbits. All other cases lead to solutions in terms of Legendre elliptical integrals.
12#
發(fā)表于 2025-3-23 14:25:05 | 只看該作者
Radial Motions: Exact Solution and Its Analysis,the Friedmann relativistic solution for expanding universe filled with no-pressure matter and DE. Other cases are reduced to a combination of the standard Legendre elliptical integrals and elementary functions, with derivations partly in Appendix?A.
13#
發(fā)表于 2025-3-23 20:11:15 | 只看該作者
14#
發(fā)表于 2025-3-23 23:50:31 | 只看該作者
15#
發(fā)表于 2025-3-24 03:32:40 | 只看該作者
16#
發(fā)表于 2025-3-24 10:17:58 | 只看該作者
17#
發(fā)表于 2025-3-24 14:27:15 | 只看該作者
18#
發(fā)表于 2025-3-24 15:37:09 | 只看該作者
Introduction,We give a brief history of dark energy, including recent work on its role in the dynamics of local galactic flows, as motivation for the book contents. Its structure is outlined.
19#
發(fā)表于 2025-3-24 19:44:30 | 只看該作者
All Motions: Summary. Locality and Stability of Finite Motions,We summarize the properties of all found solutions, and show that finite motions are essentially localized, predominantly within the no-gravity sphere. We then discuss their stability and show that, with the exception of generic periodic and aperiodic motions described by elliptic integrals, finite motions are structurally unstable.
20#
發(fā)表于 2025-3-25 00:14:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 18:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
城市| 连州市| 涟水县| 宣恩县| 马龙县| 大关县| 晋城| 南木林县| 叙永县| 锦州市| 肇东市| 沂南县| 茶陵县| 青河县| 习水县| 商水县| 义乌市| 奉贤区| 专栏| 华蓥市| 汝州市| 南丰县| 霸州市| 金华市| 舒兰市| 华池县| 永新县| 保德县| 兴海县| 固原市| 繁昌县| 保靖县| 哈密市| 潞城市| 新干县| 淳化县| 来安县| 武汉市| 阜康市| 普洱| 宁陵县|