找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Kepler Problem in the Presence of Dark Energy, and the Cosmic Local Flow; Alexander Silbergleit,Arthur Chernin Book 2019 The Author(s), un

[復(fù)制鏈接]
樓主: osteomalacia
11#
發(fā)表于 2025-3-23 09:55:38 | 只看該作者
Orbital (Planar) Motions: Exact Solution and Its Analysis,lem, infinite motions grossly dominate the finite ones. We present and discuss all elementary function solutions existing for special values of . and ., such as circular and spiral orbits. All other cases lead to solutions in terms of Legendre elliptical integrals.
12#
發(fā)表于 2025-3-23 14:25:05 | 只看該作者
Radial Motions: Exact Solution and Its Analysis,the Friedmann relativistic solution for expanding universe filled with no-pressure matter and DE. Other cases are reduced to a combination of the standard Legendre elliptical integrals and elementary functions, with derivations partly in Appendix?A.
13#
發(fā)表于 2025-3-23 20:11:15 | 只看該作者
14#
發(fā)表于 2025-3-23 23:50:31 | 只看該作者
15#
發(fā)表于 2025-3-24 03:32:40 | 只看該作者
16#
發(fā)表于 2025-3-24 10:17:58 | 只看該作者
17#
發(fā)表于 2025-3-24 14:27:15 | 只看該作者
18#
發(fā)表于 2025-3-24 15:37:09 | 只看該作者
Introduction,We give a brief history of dark energy, including recent work on its role in the dynamics of local galactic flows, as motivation for the book contents. Its structure is outlined.
19#
發(fā)表于 2025-3-24 19:44:30 | 只看該作者
All Motions: Summary. Locality and Stability of Finite Motions,We summarize the properties of all found solutions, and show that finite motions are essentially localized, predominantly within the no-gravity sphere. We then discuss their stability and show that, with the exception of generic periodic and aperiodic motions described by elliptic integrals, finite motions are structurally unstable.
20#
發(fā)表于 2025-3-25 00:14:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 18:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
潼关县| 陇南市| 阳城县| 长宁县| 碌曲县| 沙河市| 宁陵县| 夏河县| 迁西县| 谷城县| 清水河县| 长子县| 大渡口区| 罗平县| 长治市| 郎溪县| 稷山县| 右玉县| 上思县| 沁水县| 平和县| 宣汉县| 合作市| 双柏县| 蒙城县| 钟祥市| 旌德县| 宜昌市| 岳池县| 新丰县| 综艺| 务川| 和硕县| 彭阳县| 大连市| 宁城县| 大化| 黑龙江省| 松阳县| 长泰县| 白城市|