找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Keine Angst vor Mathe; Hochschulmathematik Werner Poguntke Textbook 20062nd edition Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden

[復(fù)制鏈接]
樓主: NO610
21#
發(fā)表于 2025-3-25 04:57:40 | 只看該作者
iology and other functional domains. We discern three routes for arriving at a unified account: literally applying the ICE-theory to the other functional domains, taking non-technical functions as ‘a(chǎn)s-if’ ICE-technical-functions, and generalising the ICE-theory to the other domains. We argue that th
22#
發(fā)表于 2025-3-25 11:10:42 | 只看該作者
23#
發(fā)表于 2025-3-25 15:23:21 | 只看該作者
24#
發(fā)表于 2025-3-25 17:27:31 | 只看該作者
25#
發(fā)表于 2025-3-25 22:56:17 | 只看該作者
.Proposes object-oriented schemes for software implementatio.This book presents a new semiotic theory based upon category theory and applying to a classification of creativity in music and mathematics. It is the first functorial approach to mathematical semiotics that can be applied to AI implementa
26#
發(fā)表于 2025-3-26 02:29:30 | 只看該作者
27#
發(fā)表于 2025-3-26 05:41:03 | 只看該作者
.Proposes object-oriented schemes for software implementatio.This book presents a new semiotic theory based upon category theory and applying to a classification of creativity in music and mathematics. It is the first functorial approach to mathematical semiotics that can be applied to AI implementa
28#
發(fā)表于 2025-3-26 10:51:33 | 只看該作者
e first functorial approach to mathematical semiotics that can be applied to AI implementations for creativity by using topos theory and its applications to music theory..Of particular interest is the generalized Yoneda embedding in the bidual of the category of categories (Lawvere) - parametrizing
29#
發(fā)表于 2025-3-26 13:20:57 | 只看該作者
e first functorial approach to mathematical semiotics that can be applied to AI implementations for creativity by using topos theory and its applications to music theory..Of particular interest is the generalized Yoneda embedding in the bidual of the category of categories (Lawvere) - parametrizing
30#
發(fā)表于 2025-3-26 19:25:20 | 只看該作者
Einleitung,tigsten halte. Gegenüber der ersten Auflage ist ein Kapitel über Integrale hinzu gekommen, welches mit ?Messen“ überschrieben ist. Neben den Kapiteln 2 bis 9, mit denen man in vielen anderen Fachgebieten sowie in zahlreichen Bereichen des t?glichen Lebens direkt etwas ?anfangen“ kann (weil man dort
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 14:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
天柱县| 蒲江县| 永安市| 筠连县| 莎车县| 双鸭山市| 古田县| 嵊泗县| 华蓥市| 思南县| 阿拉善右旗| 邯郸市| 浦江县| 台安县| 泸州市| 温泉县| 石台县| 宾川县| 德昌县| 上饶县| 敦煌市| 凤阳县| 保山市| 九寨沟县| 阳原县| 宁阳县| 龙南县| 烟台市| 桐城市| 南充市| 唐河县| 宜兰市| 寿阳县| 蒙城县| 奉化市| 大埔县| 甘孜| 廊坊市| 栖霞市| 闸北区| 凤台县|