找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Keine Angst vor Mathe; Hochschulmathematik Werner Poguntke Textbook 20062nd edition Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden

[復(fù)制鏈接]
樓主: NO610
21#
發(fā)表于 2025-3-25 04:57:40 | 只看該作者
iology and other functional domains. We discern three routes for arriving at a unified account: literally applying the ICE-theory to the other functional domains, taking non-technical functions as ‘a(chǎn)s-if’ ICE-technical-functions, and generalising the ICE-theory to the other domains. We argue that th
22#
發(fā)表于 2025-3-25 11:10:42 | 只看該作者
23#
發(fā)表于 2025-3-25 15:23:21 | 只看該作者
24#
發(fā)表于 2025-3-25 17:27:31 | 只看該作者
25#
發(fā)表于 2025-3-25 22:56:17 | 只看該作者
.Proposes object-oriented schemes for software implementatio.This book presents a new semiotic theory based upon category theory and applying to a classification of creativity in music and mathematics. It is the first functorial approach to mathematical semiotics that can be applied to AI implementa
26#
發(fā)表于 2025-3-26 02:29:30 | 只看該作者
27#
發(fā)表于 2025-3-26 05:41:03 | 只看該作者
.Proposes object-oriented schemes for software implementatio.This book presents a new semiotic theory based upon category theory and applying to a classification of creativity in music and mathematics. It is the first functorial approach to mathematical semiotics that can be applied to AI implementa
28#
發(fā)表于 2025-3-26 10:51:33 | 只看該作者
e first functorial approach to mathematical semiotics that can be applied to AI implementations for creativity by using topos theory and its applications to music theory..Of particular interest is the generalized Yoneda embedding in the bidual of the category of categories (Lawvere) - parametrizing
29#
發(fā)表于 2025-3-26 13:20:57 | 只看該作者
e first functorial approach to mathematical semiotics that can be applied to AI implementations for creativity by using topos theory and its applications to music theory..Of particular interest is the generalized Yoneda embedding in the bidual of the category of categories (Lawvere) - parametrizing
30#
發(fā)表于 2025-3-26 19:25:20 | 只看該作者
Einleitung,tigsten halte. Gegenüber der ersten Auflage ist ein Kapitel über Integrale hinzu gekommen, welches mit ?Messen“ überschrieben ist. Neben den Kapiteln 2 bis 9, mit denen man in vielen anderen Fachgebieten sowie in zahlreichen Bereichen des t?glichen Lebens direkt etwas ?anfangen“ kann (weil man dort
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 21:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
普兰店市| 西乌珠穆沁旗| 措美县| 玉溪市| 襄垣县| 松潘县| 微山县| 浪卡子县| 叙永县| 潮安县| 南丹县| 和静县| 旬阳县| 时尚| 龙门县| 宁安市| 中宁县| 义乌市| 柞水县| 陇西县| 桦南县| 龙口市| 吉木萨尔县| 宽城| 句容市| 资中县| 阿勒泰市| 红桥区| 汾西县| 石城县| 邹城市| 峡江县| 徐州市| 吉水县| 黄浦区| 贵德县| 通榆县| 上饶市| 太原市| 黔东| 黑龙江省|