找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: KdV ’95; Proceedings of the I Michiel Hazewinkel,Hans W. Capel,Eduard M. Jager Conference proceedings 1995 Springer Science+Business Media

[復(fù)制鏈接]
樓主: 頻率
61#
發(fā)表于 2025-4-1 02:21:33 | 只看該作者
On the Background of Limit Pass for Korteweg—de Vries Equation as the Dispersion Vanishesean one for conservation laws. The applications to the Cauchy problem to KdV equation, when dispersion tends to zero are considered. Also the Galerkin method for a periodic problem for the KdV equation is considered.
62#
發(fā)表于 2025-4-1 06:22:22 | 只看該作者
63#
發(fā)表于 2025-4-1 10:44:04 | 只看該作者
The KPI Equation with Unconstrained Initial Data= 0 and . = 0. It is shown in particular that the solution .(.,.,.) has a time derivative discontinuous at . = 0 and that at any . ≠ 0 it does not belong to the Schwartz space no matter how small in norm and rapidly decaying at large distances the initial data are chosen.
64#
發(fā)表于 2025-4-1 18:04:46 | 只看該作者
65#
發(fā)表于 2025-4-1 19:05:56 | 只看該作者
Applications of KdVkthroughs in the development of modern nonlinear mathematical science. Of all the completely integrable systems discovered since 1967, KdV certainly remains the most fully understood and arguably the most important for applications to macroscopic phenomena and processes.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 23:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
垣曲县| 台江县| 阿荣旗| 新余市| 小金县| 梅州市| 麻江县| 彭泽县| 铜山县| 自治县| 皮山县| 青神县| 定南县| 抚顺市| 三门县| 阳原县| 连南| 华阴市| 紫阳县| 井研县| 万源市| 保山市| 建瓯市| 房产| 南充市| 突泉县| 绵阳市| 友谊县| 上思县| 乌兰浩特市| 象山县| 堆龙德庆县| 修水县| 信阳市| 特克斯县| 静安区| 鹤岗市| 苏州市| 兖州市| 冕宁县| 永德县|