找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: KdV ’95; Proceedings of the I Michiel Hazewinkel,Hans W. Capel,Eduard M. Jager Conference proceedings 1995 Springer Science+Business Media

[復(fù)制鏈接]
樓主: 頻率
21#
發(fā)表于 2025-3-25 04:10:51 | 只看該作者
978-94-010-4011-2Springer Science+Business Media Dordrecht 1995
22#
發(fā)表于 2025-3-25 08:19:47 | 只看該作者
23#
發(fā)表于 2025-3-25 14:53:57 | 只看該作者
An ODE to a PDE: Glories of the KdV Equation. An Appreciation of the Equation on Its 100th Birthday!Though you may not believe me, I am normally of a shy and retiring disposition, modest to a fault, even timid at times. Therefore it is difficult for me to bring myself to make the following bold claim, but I must do so in the interest of the Higher Truth.
24#
發(fā)表于 2025-3-25 18:48:54 | 只看該作者
25#
發(fā)表于 2025-3-25 21:40:25 | 只看該作者
26#
發(fā)表于 2025-3-26 00:11:44 | 只看該作者
Instructive History of the Quantum Inverse Scattering Methodwas described in a short and famous research letter by Gardner, Green, Kruskal, and Miura (GGKM) [2] in 1967. Its quantum version, which is ten years younger, was devised mostly in Leningrad (now St. Petersburg). In what follows, I shall underline some highlights and lessons of this latter development.
27#
發(fā)表于 2025-3-26 04:23:04 | 只看該作者
Korteweg, de Vries, and Dutch Science at the Turn of the Centuryes, which was defended on 1 December 1894 at the Amsterdam University [1]. That the centenary of the equation is nevertheless celebrated in 1995, instead of in 1994, has a good reason: the work of Korteweg and de Vries became internationally known through a joint paper they published in May 1895 [2].
28#
發(fā)表于 2025-3-26 09:37:35 | 只看該作者
29#
發(fā)表于 2025-3-26 15:33:57 | 只看該作者
30#
發(fā)表于 2025-3-26 19:50:13 | 只看該作者
A KdV Equation in 2 + 1 Dimensions: Painlevé Analysis, Solutions and Similarity Reductionshe Darboux—Moutard—Matveev formalism arises in the context of this analysis. Some solutions and their interactions are also analyzed. The singular manifold equations are also used to determine symmetry reductions. This procedure can be related with the direct method of Clarkson and Kruskal.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 17:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
当涂县| 仙游县| 竹溪县| 五常市| 漳州市| 阜阳市| 青田县| 上饶市| 达日县| 赤壁市| 忻州市| 芜湖市| 灵山县| 密山市| 招远市| 武宁县| 尚义县| 阿拉善右旗| 中江县| 延庆县| 嫩江县| 太仆寺旗| 措美县| 南召县| 哈尔滨市| 望江县| 邯郸市| 银川市| 利川市| 曲松县| 泰安市| 阿勒泰市| 湘阴县| 紫金县| 新丰县| 江口县| 安丘市| 河南省| 团风县| 烟台市| 遂平县|