找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: KdV & KAM; Thomas Kappeler,Jürgen P?schel Book 2003 Springer-Verlag Berlin Heidelberg 2003 Calculation.Finite.Integrable Systems.KAM Theor

[復(fù)制鏈接]
樓主: 浮淺
11#
發(fā)表于 2025-3-23 11:53:09 | 只看該作者
12#
發(fā)表于 2025-3-23 16:46:55 | 只看該作者
Thomas Kappeler,Jürgen P?schelc programs to the higher-order setting of the simply typed .-calculus, where programs are presented by conditional pattern rewrite systems. Our approach generalizes and combines declarative debugging techniques previously developed for less expressive declarative programming paradigms involving appl
13#
發(fā)表于 2025-3-23 20:22:24 | 只看該作者
14#
發(fā)表于 2025-3-24 00:13:36 | 只看該作者
Classical Background,In this book we consider the periodic KdV equation as an . integrable Hamiltonian system, and subject it to small Hamiltonian perturbations. To this end, we extend many concepts, ideas and notions from the classical . theory, such as angle-action coordinates, Birkhoff normal forms, and in particular KAM theory.
15#
發(fā)表于 2025-3-24 06:16:30 | 只看該作者
Birkhoff Coordinates,In this chapter we consider the KdV equation . on the space .. (..) of 1-periodic functions on the real line.
16#
發(fā)表于 2025-3-24 07:29:04 | 只看該作者
The KAM Proof,In the following we give a complete proof of the infinite dimensional KAM theorem used in chapter IV to study small Hamiltonian perturbations of KdV equations. To make this presentation independent of chapter IV we begin by recalling the set up.
17#
發(fā)表于 2025-3-24 11:34:30 | 只看該作者
,Kuksin’s Lemma,We consider the following first order partial differential equation coming up in the proof of the classical KAM theorem: .for functions on the torus T. = ?./2.?., where ..
18#
發(fā)表于 2025-3-24 15:29:16 | 只看該作者
19#
發(fā)表于 2025-3-24 21:54:33 | 只看該作者
Psi-Functions and Frequencies,In this appendix we prove the following theorem stated in section 8. In the form presented it is due to [6], but the proof given here is much simpler, and the normalizing constants are explicitly computed. See also [90] for prior results. — For notations we refer to sections 6 and 7.
20#
發(fā)表于 2025-3-25 01:06:30 | 只看該作者
Birkhoff Normal Forms,Consider a Hamiltonian on the space ... introduced in section 14 of the form ., where the .. are homogeneous of degree . in . ∈ ...
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 05:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
页游| 昆山市| 舒兰市| 翼城县| 呼伦贝尔市| 方山县| 阳春市| 鹤岗市| 汝州市| 聊城市| 青浦区| 镇雄县| 沈阳市| 星子县| 石狮市| 焦作市| 建瓯市| 申扎县| 清远市| 江都市| 晋中市| 霸州市| 柏乡县| 蒲城县| 岳阳县| 方山县| 巫山县| 太原市| 西乌| 连南| 嘉祥县| 尚义县| 巫山县| 图木舒克市| 如皋市| 宁南县| 五指山市| 开平市| 从江县| 丰城市| 铜梁县|