找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Kalman Filtering and Information Fusion; Hongbin Ma,Liping Yan,Mengyin Fu Book 2020 Science Press 2020 Kalman filter.information fusion.un

[復(fù)制鏈接]
樓主: 強烈興趣
21#
發(fā)表于 2025-3-25 05:48:18 | 只看該作者
22#
發(fā)表于 2025-3-25 07:41:14 | 只看該作者
A Framework of Finite-Model Kalman Filter with Case Study: MVDP-FMKF Algorithmrk well or even diverge in the presence of large model uncertainty. To resolve this problem occurred frequently in practical applications, where it is expensive to have large number of high-cost experiments or even impossible to obtain the exact system model, motivated by our previous pioneering wor
23#
發(fā)表于 2025-3-25 13:12:42 | 只看該作者
Kalman Filters for Continuous Parametric Uncertain Systems Kalman filter is highly restricted by strict a priori requirements on the information of dynamic model and statistical information of process noises. In practice, the covariance matrix of process noise is almost impossible to be directly determined a priori due to the intrinsic coupling of process
24#
發(fā)表于 2025-3-25 16:29:19 | 只看該作者
25#
發(fā)表于 2025-3-25 21:18:31 | 只看該作者
26#
發(fā)表于 2025-3-26 01:16:23 | 只看該作者
CKF-Based State Estimation of Nonlinear System by Fusion of Multirate Multisensor Unreliable Measurent sampling rates, and the observations are randomly unreliable. Based on online checking of the reliability of the measurements, the cubature Kalman filter (CKF) is improved, which has better robustness and stability. Based on the improved CKF, an effective state estimation algorithm is presented,
27#
發(fā)表于 2025-3-26 06:38:48 | 只看該作者
Decentralized Adaptive Filtering for Multi-agent Systems with Uncertain Couplings problem is challenging due to the mutual dependency of state estimation and coupling estimation. First, the problem is divided into four typical types based on the origin of coupling relations and linearity of the agent dynamics. Then models of the four types are given, and the corresponding decent
28#
發(fā)表于 2025-3-26 12:17:23 | 只看該作者
29#
發(fā)表于 2025-3-26 16:03:12 | 只看該作者
30#
發(fā)表于 2025-3-26 19:38:27 | 只看該作者
Optimal Estimation for Multirate Systems with Unreliable Measurements and Correlated Noisegly, considerable research attention has been devoted to state estimation techniques over sensor networks, not only due to a large number of potential applications but also because they provide more information than traditional communication systems with a single sensor.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 02:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南澳县| 临泉县| 宿松县| 阜南县| 天柱县| 织金县| 东港市| 屯留县| 元朗区| 白沙| 汕尾市| 宁河县| 普宁市| 福建省| 大荔县| 邵阳县| 如皋市| 蒲江县| 蛟河市| 马关县| 扬州市| 安多县| 平潭县| 措勤县| 建德市| 涟源市| 普兰店市| 和田市| 东台市| 冷水江市| 略阳县| 阜阳市| 宁国市| 竹溪县| 张家川| 达拉特旗| 奉节县| 阳高县| 轮台县| 隆尧县| 东源县|