找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Kalman Filtering Under Information Theoretic Criteria; Badong Chen,Lujuan Dang,Jose C. Principe Book 2023 The Editor(s) (if applicable) an

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 06:04:06 | 只看該作者
Information Theoretic Criteria,apability of model prediction when facing more complex non-Gaussian noises, such as noises from multimodal distributions. Sometimes, in order to obtain an optimal solution, the MEE needs to manually add a bias to the model to yield zero mean error. To more naturally adjust the error mean, the MEE wi
22#
發(fā)表于 2025-3-25 08:42:43 | 只看該作者
Kalman Filtering Under Information Theoretic Criteria, maximum correntropy criterion (GMCKF) is also derived. The GMCKF is more general and flexible, which includes the MCKF with Gaussian kernel as a special case. In addition, to better deal with more complicated non-Gaussian noises such as noises from multimodal distributions, the minimum error entrop
23#
發(fā)表于 2025-3-25 12:46:12 | 只看該作者
24#
發(fā)表于 2025-3-25 19:21:58 | 只看該作者
Cubature Kalman Filtering Under Information Theoretic Criteria,ssian disturbances, the estimates obtained by MCCKF may be obviously biased. To address this issue, the cubature Kalman filter under minimum error entropy with fiducial points (MEEF-CKF) is presented to improve the robustness against noises. The MEEF-CKF can achieve high estimation accuracy and stro
25#
發(fā)表于 2025-3-25 22:55:12 | 只看該作者
26#
發(fā)表于 2025-3-26 02:01:23 | 只看該作者
27#
發(fā)表于 2025-3-26 05:35:42 | 只看該作者
28#
發(fā)表于 2025-3-26 11:01:56 | 只看該作者
29#
發(fā)表于 2025-3-26 16:18:51 | 只看該作者
Introduction,ance, data integration, pattern recognition, tracking, and control systems. Kalman filtering yields an optimal estimator when the system is linear and innovation and noise are Gaussian. The Gaussian assumption is, however, seldom the case in real-world applications, where noise distributions tend to
30#
發(fā)表于 2025-3-26 18:40:23 | 只看該作者
Kalman Filtering, robotics, with an enormous importance in the industry. The actual applications include parameter estimation, system identification, target tracking, simultaneous localization, and many others. The purpose of this chapter is to briefly review the foundations of statistical estimation. For linear dyn
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 15:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泸水县| 绍兴市| 湟源县| 忻州市| 綦江县| 阜南县| 昆山市| 宜川县| 华安县| 同江市| 芦山县| 盐亭县| 酉阳| 龙门县| 贵南县| 景东| 远安县| 昌宁县| 凤城市| 南通市| 句容市| 龙泉市| 招远市| 长汀县| 沈阳市| 呼伦贝尔市| 柘城县| 仲巴县| 革吉县| 巨野县| 缙云县| 库车县| 嵩明县| 汶川县| 清远市| 静海县| 水富县| 磐石市| 洛隆县| 鱼台县| 南康市|