找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: K-Theory for Group C*-Algebras and Semigroup C*-Algebras; Joachim Cuntz,Siegfried Echterhoff,Guoliang Yu Textbook 2017 Springer Internatio

[復(fù)制鏈接]
樓主: indulge
11#
發(fā)表于 2025-3-23 11:45:40 | 只看該作者
978-3-319-59914-4Springer International Publishing AG 2017
12#
發(fā)表于 2025-3-23 17:27:15 | 只看該作者
K-Theory for Group C*-Algebras and Semigroup C*-Algebras978-3-319-59915-1Series ISSN 1661-237X Series E-ISSN 2296-5041
13#
發(fā)表于 2025-3-23 20:17:58 | 只看該作者
14#
發(fā)表于 2025-3-24 01:59:44 | 只看該作者
https://doi.org/10.1007/978-3-319-59915-1C*-algebras; group C*-algebras; semigroup-C*-algebras; crossed products; K-theory; KK-theory; bivariant K-
15#
發(fā)表于 2025-3-24 03:03:38 | 只看該作者
Introduction,The theory of operator algebras in general and ..-algebras in particular has always benefited hugely and drawn a lot of inspiration from interactions with other areas of mathematics such as geometry, topology, group theory, dynamical systems or number theory, to mention just a few.
16#
發(fā)表于 2025-3-24 08:42:28 | 只看該作者
,Crossed products and the Mackey–Rieffel–Green machine,If a locally compact group . acts continuously via *-automorphisms on a ..-algebra ., one can form the full and reduced crossed products . of . by ..
17#
發(fā)表于 2025-3-24 14:35:13 | 只看該作者
18#
發(fā)表于 2025-3-24 18:18:09 | 只看該作者
Textbook 2017eports on some very recently developed techniques with applications to particular examples. Much of the material is available here for the first time in book form. The topics discussed are among the most classical and intensely studied C*-algebras. They are important for applications in fields as di
19#
發(fā)表于 2025-3-24 19:36:35 | 只看該作者
Algebraic actions and their ,,-algebras,ection 3.5.3. Some of these are standard examples in ergodic theory, while others arise from semigroups and semigroup actions of number-theoretic origin. All this can be subsumed under the heading “algebraic actions”.
20#
發(fā)表于 2025-3-25 00:45:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 09:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洪洞县| 黄陵县| 岳西县| 阜新| 东乌珠穆沁旗| 临城县| 石河子市| 安塞县| 梨树县| 三明市| 闵行区| 肃北| 鄂托克旗| 建水县| 达日县| 综艺| 潍坊市| 浦江县| 柳河县| 庆安县| 威信县| 莱西市| 外汇| 克东县| 化德县| 竹溪县| 浠水县| 尚志市| 高阳县| 昆明市| 芜湖市| 油尖旺区| 郧西县| 鄱阳县| 玛纳斯县| 荥经县| 定安县| 介休市| 武定县| 类乌齐县| 辽宁省|