找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: K?nig, Weiser, Liebhaber und Skeptiker; Rezeptionen Salomos Elena Deinhammer,Susanne Gillmayr-Bucher,Imelda Ro Book 2022 Der/die Herausgebe

[復(fù)制鏈接]
樓主: 愚蠢地活
31#
發(fā)表于 2025-3-26 22:47:02 | 只看該作者
Antonia KrainerA whose graph is a simple cycle), is in NP but not in P unless NP ? DTIME(..). Our work was also motivated by the problem of finding structurally simple ‘normal forms’ of NFA‘s over a unary alphabet. We present some normal forms for . NFA‘s over a unary alphabet and present an application to lower b
32#
發(fā)表于 2025-3-27 04:06:44 | 只看該作者
33#
發(fā)表于 2025-3-27 08:34:40 | 只看該作者
Elisabeth Birnbaumrmalism above can be effectively used as a proof tool in dependency theory. We demonstrate its power by showing that it leads to a significant simplification of the proofs of some previous results connecting sets of multivalued dependencies and acyclic join dependencies.
34#
發(fā)表于 2025-3-27 13:09:11 | 只看該作者
35#
發(fā)表于 2025-3-27 14:20:23 | 只看該作者
36#
發(fā)表于 2025-3-27 20:10:02 | 只看該作者
Elena Deinhammerourse of the proof, we present two results that appear to be of independent interest: first, we show that for any protocol there is a computation in which some process is a .. This process can split the possible outputs of the protocol to two disjoint sets. In case that the protocol is also fault-to
37#
發(fā)表于 2025-3-28 01:56:52 | 只看該作者
38#
發(fā)表于 2025-3-28 02:05:49 | 只看該作者
Susanne Gillmayr-Bucher,Imelda Rohrbacher,Antonia Krainer,Elena Deinhammer
39#
發(fā)表于 2025-3-28 10:08:28 | 只看該作者
40#
發(fā)表于 2025-3-28 11:45:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 15:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
茶陵县| 宝鸡市| 安吉县| 建德市| 五华县| 合川市| 萍乡市| 霞浦县| 建水县| 晋中市| 图木舒克市| 南木林县| 宁远县| 张家港市| 长子县| 普兰店市| 高阳县| 巴马| 海晏县| 龙井市| 青岛市| 林州市| 康平县| 乌恰县| 宁波市| 秭归县| 家居| 西宁市| 太谷县| 建昌县| 蒙自县| 肥西县| 喜德县| 扎兰屯市| 东兴市| 潼南县| 阿坝县| 海淀区| 登封市| 铜鼓县| 周宁县|